Patents by Inventor Andre Ronald WATSON
Andre Ronald WATSON has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12123012Abstract: Provided are methods and compositions for delivering a nucleic acid, protein, and/or ribonucleoprotein payload to a cell. Also provided are delivery molecules that include a peptide targeting ligand conjugated to a protein or nucleic acid payload (e.g., an siRNA molecule), or conjugated to a charged polymer polypeptide domain (e.g., poly-arginine such as 9R or a poly-histidine such as 6H, and the like). The targeting ligand provides for (i) targeted binding to a cell surface protein, and (ii) engagement of a long endosomal recycling pathway. As such, when the targeting ligand engages the intended cell surface protein, the delivery molecule enters the cell (e.g., via endocytosis) but is preferentially directed away from the lysosomal degradation pathway.Type: GrantFiled: November 25, 2020Date of Patent: October 22, 2024Assignee: LIGANDAL, INC.Inventors: Andre Ronald Watson, Christian Foster
-
Publication number: 20230323401Abstract: Provided are methods and compositions for genome editing using a delivery vehicle with multiple payloads. In some embodiments the delivery vehicle includes a payload that includes (a) one or more sequence specific nucleases that cleave the cell's genome or one or more nucleic acids encoding same, (b) a first donor DNA, which includes a nucleotide sequence that is inserted into the cell's genome, where insertion of said nucleotide sequence produces, in the cell's genome at the site of insertion, a target sequence (e.g., an attP site) for a site-specific recombinase; (c) the site-specific recombinase (or a nucleic acid encoding same) (e.g., ?C31, ?C31 RDF, Cre, FLP), where the site-specific recombinase recognizes said target sequence; and (d) a second donor DNA, which includes a nucleotide sequence that is inserted into the cell's genome as a result of recognition of said target sequence by the site-specific recombinase.Type: ApplicationFiled: December 30, 2022Publication date: October 12, 2023Inventors: Andre Ronald Watson, Christian Foster, Shuailiang Lin
-
Publication number: 20230059921Abstract: Provided are methods and compositions for the heterologous expression of a payload (e.g., DNA, RNA, protein) of interest in a target cell (e.g., cancer cell). In some cases payload delivery results in expression (e.g., by a cancer cell in vivo) of a secreted immune signal such as a cytokine, a plasma membrane-tethered affinity marker (thus resulting in an induced immune response), or a cytotoxic protein such as an apoptosis inducer (e.g., by a cancer cell in vivo). Payloads are delivered with a delivery vehicle and in some cases the delivery vehicle is a nanoparticle. In some cases a subject nanoparticle includes a targeting ligand for targeted delivery to a specific cell type/tissue type (e.g., a cancerous tissue/cell). In some embodiments, payload delivery is “personalized” in the sense that the delivery vehicle and/or payload can be designed based on patient-specific information.Type: ApplicationFiled: November 2, 2021Publication date: February 23, 2023Inventors: Andre Ronald Watson, Shahab Chizari, Ryan Spencer, Christian Foster, Shuailiang Lin, Sara Marie Peyrot, Pranali Deshpande, Matthew Dobbin, William Connors
-
Publication number: 20210324406Abstract: Provided are methods and compositions for delivering a nucleic acid, protein, and/or ribonucleoprotein payload to a cell. Also provided are delivery molecules that include a peptide targeting ligand conjugated to a protein or nucleic acid payload (e.g., an siRNA molecule), or conjugated to a charged polymer polypeptide domain (e.g., poly-arginine such as 9R or a poly-histidine such as 6H, and the like). The targeting ligand provides for (i) targeted binding to a cell surface protein, and (ii) engagement of a long endosomal recycling pathway. As such, when the targeting ligand engages the intended cell surface protein, the delivery molecule enters the cell (e.g., via endocytosis) but is preferentially directed away from the lysosomal degradation pathway.Type: ApplicationFiled: November 25, 2020Publication date: October 21, 2021Inventors: Andre Ronald WATSON, Christian FOSTER
-
Patent number: 10975388Abstract: Provided are methods and compositions for delivering a nucleic acid, protein, and/or ribonucleoprotein payload to a cell. Also provided are delivery molecules that include a peptide targeting ligand conjugated to a protein or nucleic acid payload (e.g., an siRNA molecule), or conjugated to a charged polymer polypeptide domain (e.g., poly-arginine such as 9R or a poly-histidine such as 6H, and the like). The targeting ligand provides for (i) targeted binding to a cell surface protein, and (ii) engagement of a long endosomal recycling pathway. As such, when the targeting ligand engages the intended cell surface protein, the delivery molecule enters the cell (e.g., via endocytosis) but is preferentially directed away from the lysosomal degradation pathway.Type: GrantFiled: December 14, 2017Date of Patent: April 13, 2021Assignee: LIGANDAL, INC.Inventors: Andre Ronald Watson, Christian Foster
-
Publication number: 20200208177Abstract: Provided are methods and compositions for genome editing using sticky ends. Subject methods include (a) generating a staggered cut at each of two locations in genomic DNA of a target cell, thus generating two genomic staggered ends; and (b) providing/introducing a linear double stranded donor DNA that has staggered ends (i.e., sticky ends) that match/correspond to the sticky ends of the genomic DNA such that the sticky ends of the donor DNA hybridize with the sticky ends of the genomic DNA and the donor DNA is inserted into the genome. In some cases, the staggered cuts are generated by introducing into a target cell one or more sequence specific nucleases (or one or more nucleic acids encoding the one or more sequence specific nucleases).Type: ApplicationFiled: April 17, 2019Publication date: July 2, 2020Inventors: Andre Ronald Watson, Christian Foster, Shuailiang Lin, Sara Marie Peyrot
-
Publication number: 20200181642Abstract: An improved nanoparticle for transfecting cells is provided. The nanoparticle includes a core polyplex and a silica coating on the core polyplex and, optionally, a polymer attached to an outer surface of the silica coating, where the polyplex includes an anionic polymer, a cationic polymer, a cationic polypeptide, and a polynucleotide. Also provided is an improved method of modifying intracellular polynucleotides. The method includes contacting a cell with a nanoparticle that includes a core polyplex and a silica coating on the core polyplex and, optionally, a polymer attached to an outer surface of the silica coating, where the polyplex includes an anionic polymer, a cationic polymer, a cationic polypeptide, and a polynucleotide.Type: ApplicationFiled: November 27, 2019Publication date: June 11, 2020Applicant: RENSSELAER POLYTECHNIC INSTITUTEInventors: Shiva Prasad KOTHA, Andre Ronald WATSON, Vaibhav A. PANDIT
-
Publication number: 20200149070Abstract: Provided are methods and compositions for genome editing using a delivery vehicle with multiple payloads. In some embodiments the delivery vehicle includes a payload that includes (a) one or more sequence specific nucleases that cleave the cell's genome or one or more nucleic acids encoding same, (b) a first donor DNA, which includes a nucleotide sequence that is inserted into the cell's genome, where insertion of said nucleotide sequence produces, in the cell's genome at the site of insertion, a target sequence (e.g., an attP site) for a site-specific recombinase; (c) the site-specific recombinase (or a nucleic acid encoding same) (e.g., ?C31, ?C31 RDF, Cre, FLP), where the site-specific recombinase recognizes said target sequence; and (d) a second donor DNA, which includes a nucleotide sequence that is inserted into the cell's genome as a result of recognition of said target sequence by the site-specific recombinase.Type: ApplicationFiled: April 24, 2019Publication date: May 14, 2020Inventors: Andre Ronald Watson, Christian Foster, Shuailiang Lin
-
Publication number: 20200095605Abstract: Provided are methods and compositions for nanoparticle delivery of payloads (e.g., nucleic acid and/or protein payloads) to cells. In some embodiments, a subject nanoparticle includes a core and a sheddable layer encapsulating the core, where the core includes (i) an anionic polymer composition; (ii) a cationic polymer composition; (iii) a cationic polypeptide composition; and (iv) a nucleic acid and/or protein payload; and where: (a) the anionic polymer composition includes polymers of D-isomers of an anionic amino acid and polymers of L-isomers of an anionic amino acid, and/or (b) the cationic polymer composition comprises polymers of D-isomers of a cationic amino acid and polymers of L-isomers of a cationic amino acid. In some cases, the polymers of D-isomers of an anionic and/or cationic amino acid are present at a ratio, relative to the polymers of L-isomers, in a range of from 10:1 to 1:10.Type: ApplicationFiled: December 2, 2019Publication date: March 26, 2020Inventors: Andre Ronald WATSON, Christian FOSTER
-
Patent number: 10526616Abstract: An improved nanoparticle for transfecting cells is provided. The nanoparticle includes a core polyplex and a silica coating on the core polyplex and, optionally, a polymer attached to an outer surface of the silica coating, where the polyplex includes an anionic polymer, a cationic polymer, a cationic polypeptide, and a polynucleotide. Also provided is an improved method of modifying intracellular polynucleotides. The method includes contacting a cell with a nanoparticle that includes a core polyplex and a silica coating on the core polyplex and, optionally, a polymer attached to an outer surface of the silica coating, where the polyplex includes an anionic polymer, a cationic polymer, a cationic polypeptide, and a polynucleotide.Type: GrantFiled: September 23, 2014Date of Patent: January 7, 2020Assignee: Rensselaer Polytechnic InstituteInventors: Shiva Prasad Kotha, Andre Ronald Watson, Vaibhav A. Pandit
-
Publication number: 20180179553Abstract: Provided are methods and compositions for nanoparticle delivery of payloads (e.g., nucleic acid and/or protein payloads) to cells. In some embodiments, a subject nanoparticle includes a core and a sheddable layer encapsulating the core, where the core includes (i) an anionic polymer composition; (ii) a cationic polymer composition; (iii) a cationic polypeptide composition; and (iv) a nucleic acid and/or protein payload; and where: (a) the anionic polymer composition includes polymers of D-isomers of an anionic amino acid and polymers of L-isomers of an anionic amino acid, and/or (b) the cationic polymer composition comprises polymers of D-isomers of a cationic amino acid and polymers of L-isomers of a cationic amino acid. In some cases, the polymers of D-isomers of an anionic and/or cationic amino acid are present at a ratio, relative to the polymers of L-isomers, in a range of from 10:1 to 1:10.Type: ApplicationFiled: December 14, 2017Publication date: June 28, 2018Inventors: Andre Ronald Watson, Christian Foster
-
Publication number: 20180161447Abstract: Provided are methods and compositions for delivering a nucleic acid, protein, and/or ribonucleoprotein payload to a cell. Also provided are delivery molecules that include a peptide targeting ligand conjugated to a protein or nucleic acid payload (e.g., an siRNA molecule), or conjugated to a charged polymer polypeptide domain (e.g., poly-arginine such as 9R or a poly-histidine such as 6H, and the like). The targeting ligand provides for (i) targeted binding to a cell surface protein, and (ii) engagement of a long endosomal recycling pathway. As such, when the targeting ligand engages the intended cell surface protein, the delivery molecule enters the cell (e.g., via endocytosis) but is preferentially directed away from the lysosomal degradation pathway.Type: ApplicationFiled: December 14, 2017Publication date: June 14, 2018Inventors: Andre Ronald Watson, Christian Foster
-
Publication number: 20160230189Abstract: An improved nanoparticle for transfecting cells is provided. The nanoparticle includes a core polyplex and a silica coating on the core polyplex and, optionally, a polymer attached to an outer surface of the silica coating , where the polyplex includes an anionic polymer, a cationic polymer, a cationic polypeptide, and a polynucleotide. Also provided is an improved method of modifying intracellular polynucleotides. The method includes contacting a cell with a nanoparticle that includes a core polyplex and a silica coating on the core polyplex and, optionally, a polymer attached to an outer surface of the silica coating, where the polyplex includes an anionic polymer, a cationic polymer, a cationic polypeptide, and a polynucleotide.Type: ApplicationFiled: September 23, 2014Publication date: August 11, 2016Applicant: RENSSELAER POLYTECHNIC INSTITUTEInventors: Shiva Prasad KOTHA, Andre Ronald WATSON, Vaibhav A. PANDIT