Patents by Inventor Andrea BERTOTTI

Andrea BERTOTTI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11845994
    Abstract: Recent large-scale analyses have demonstrated that the genomic landscape of human cancer is complex and variable among individuals of the same tumor type. Such underlying genetic differences may in part be responsible for the varying therapeutic responses observed in cancer patients. To examine the effect of somatic genetic changes in colorectal cancer on sensitivity to a common targeted therapy, we performed complete exome sequence and copy number analyses of 129 tumors that were KRAS wild-type and analyzed their response to anti-EGFR antibody blockade in patient-derived tumorgraft models. In addition to previously identified genes, we detected mutations in ERBB2, EGFR, FGFR1, PDGFRA, and MAP2K1 as potential mechanisms of primary resistance to this therapy. Alterations in the ectodomain of EGFR were identified in patients with acquired resistance to EGFR blockade.
    Type: Grant
    Filed: April 8, 2021
    Date of Patent: December 19, 2023
    Assignees: The Johns Hopkins University, University of Torino
    Inventors: Victor E. Velculescu, Eniko Papp, Vilmos Adleff, Andrea Bertotti, Livio Trusolino
  • Publication number: 20210301352
    Abstract: Recent large-scale analyses have demonstrated that the genomic landscape of human cancer is complex and variable among individuals of the same tumor type. Such underlying genetic differences may in part be responsible for the varying therapeutic responses observed in cancer patients. To examine the effect of somatic genetic changes in colorectal cancer on sensitivity to a common targeted therapy, we performed complete exome sequence and copy number analyses of 129 tumors that were KRAS wild-type and analyzed their response to anti-EGFR antibody blockade in patient-derived tumorgraft models. In addition to previously identified genes, we detected mutations in ERBB2, EGFR, FGFR1, PDGFRA, and MAP2K1 as potential mechanisms of primary resistance to this therapy. Alterations in the ectodomain of EGFR were identified in patients with acquired resistance to EGFR blockade.
    Type: Application
    Filed: April 8, 2021
    Publication date: September 30, 2021
    Inventors: Victor E. Velculescu, Eniko Papp, Vilmos Adleff, Andrea Bertotti, Livio Trusolino
  • Patent number: 10982287
    Abstract: Recent large-scale analyses have demonstrated that the genomic landscape of human cancer is complex and variable among individuals of the same tumor type. Such underlying genetic differences may in part be responsible for the varying therapeutic responses observed in cancer patients. To examine the effect of somatic genetic changes in colorectal cancer on sensitivity to a common targeted therapy, we performed complete exome sequence and copy number analyses of 129 tumors that were KRAS wild-type and analyzed their response to anti-EGFR antibody blockade in patient-derived tumorgraft models. In addition to previously identified genes, we detected mutations in ERBB2, EGFR, FGFR1, PDGFRA, and MAP2K1 as potential mechanisms of primary resistance to this therapy. Alterations in the ectodomain of EGFR were identified in patients with acquired resistance to EGFR blockade.
    Type: Grant
    Filed: January 6, 2016
    Date of Patent: April 20, 2021
    Assignees: The Johns Hopkins University, University of Torino
    Inventors: Victor Velculescu, Eniko Papp, Vilmos Adleff, Andrea Bertotti, Livio Trusolino
  • Publication number: 20180346987
    Abstract: Recent large-scale analyses have demonstrated that the genomic landscape of human cancer is complex and variable among individuals of the same tumor type. Such underlying genetic differences may in part be responsible for the varying therapeutic responses observed in cancer patients. To examine the effect of somatic genetic changes in colorectal cancer on sensitivity to a common targeted therapy, we performed complete exome sequence and copy number analyses of 129 tumors that were KRAS wild-type and analyzed their response to anti-EGFR antibody blockade in patient-derived tumorgraft models. In addition to previously identified genes, we detected mutations in ERBB2, EGFR, FGFR1, PDGFRA, and MAP2K1 as potential mechanisms of primary resistance to this therapy. Alterations in the ectodomain of EGFR were identified in patients with acquired resistance to EGFR blockade.
    Type: Application
    Filed: January 6, 2016
    Publication date: December 6, 2018
    Inventors: Victor VELCULESCU, Eniko PAPP, Vilmos ADLEFF, Andrea BERTOTTI, Livio TRUSOLINO