Patents by Inventor Andrea Carlo FERRARI

Andrea Carlo FERRARI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11869728
    Abstract: We disclose herein a hetero-structure comprising: a curved material; at least one layer of a first material rolled around the curved material; at least one intermediate layer rolled on the at least one layer of the first material; and at least one layer of a second material rolled around the at least one intermediate layer.
    Type: Grant
    Filed: April 29, 2020
    Date of Patent: January 9, 2024
    Assignee: CAMBRIDGE ENTERPRISE LIMITED
    Inventors: Shahab Akhavan, Amin Taheri Najafabadi, Ilya Goykhman, Luigi Occhipinti, Andrea Carlo Ferrari
  • Patent number: 11753508
    Abstract: A method for treating polymer particles is disclosed. Polymer particles and a liquid are provided. The method includes the following steps (a) and (b). (a) Mixing said polymer particles with said carrier liquid to form a dispersion of said particles in said carrier liquid at a concentration of at least 0.1 g/L, based on the volume of the dispersion. (b) Subjecting the dispersion to microfluidization treatment thereby causing particle stretching, particle size reduction and increasing the surface area per unit mass of the polymer particles. Also disclosed is a particulate composition comprising polymer particles mixed with nanoplates derived from a layered material, wherein the particulate composition has a BET surface area of at least 10 m2/g. Furthermore, there is disclosed a method for the manufacture of a component formed of a composite of a polymer with a dispersion of nanoplates. The particulate composition is provided as a precursor particulate.
    Type: Grant
    Filed: September 21, 2018
    Date of Patent: September 12, 2023
    Assignee: Cambridge Enterprise Limited
    Inventors: Andrea Carlo Ferrari, Stephen Anthony Hodge, Panagiotis Karagiannidis, Yue Lin
  • Patent number: 11616161
    Abstract: A photodetector comprising an optical waveguide structure comprising at least three stripes spaced from one another such that a slot is present between each two adjacent stripes of the at least three stripes. A graphene absorption layer is provided over or underneath the at least three stripes. There is an electrode for each stripe, over or underneath the graphene absorption layer. The photodetector is configured such that two adjacent electrodes are biased using opposite polarities to create a p-n junction effect in a portion of the graphene absorption layer. In particular the portion of the graphene absorption layer is located over or underneath each respective slot between said each two adjacent stripes.
    Type: Grant
    Filed: September 30, 2019
    Date of Patent: March 28, 2023
    Assignee: CAMBRIDGE ENTERPRISE LIMITED
    Inventors: Andrea Carlo Ferrari, Luigi Occhipinti, Alfonso Ruocco
  • Publication number: 20220359824
    Abstract: Semiconductor devices comprising: a semiconductor device comprising: a first electrode comprising conductive material, wherein the conductive material is deposited by ink deposition (for example, layered material inks such as graphene and/or graphite), or wherein the conductive material comprises CVD grown graphene or carbon nanotubes; a first charge transportation layer, wherein the first charge transportation layer is doped with the conductive material of the first electrode; an optional insulation layer; a perovskite active layer; a second charge transportation layer; and a second electrode.
    Type: Application
    Filed: September 25, 2020
    Publication date: November 10, 2022
    Inventors: Andrea Carlo Ferrari, George Kakavelakis, Konstantinos Dimos, Colm O'Riada, Luigi Occhipinti
  • Publication number: 20220172905
    Abstract: We disclose herein a hetero-structure comprising: a curved material; at least one layer of a first material rolled around the curved material; at least one intermediate layer rolled on the at least one layer of the first material; and at least one layer of a second material rolled around the at least one intermediate layer.
    Type: Application
    Filed: April 29, 2020
    Publication date: June 2, 2022
    Inventors: Shahab AKHAVAN, Amin Taheri NAJAFABADI, Ilya GOYKHMAN, Luigi OCCHIPINTI, Andrea Carlo FERRARI
  • Publication number: 20220005968
    Abstract: A photodetector comprising an optical waveguide structure comprising at least three stripes spaced from one another such that a slot is present between each two adjacent stripes of the at least three stripes. A graphene absorption layer is provided over or underneath the at least three stripes. There is an electrode for each stripe, over or underneath the graphene absorption layer. The photodetector is configured such that two adjacent electrodes are biased using opposite polarities to create a p-n junction effect in a portion of the graphene absorption layer. In particular the portion of the graphene absorption layer is located over or underneath each respective slot between said each two adjacent stripes.
    Type: Application
    Filed: September 30, 2019
    Publication date: January 6, 2022
    Inventors: Andrea Carlo FERRARI, Luigi OCCHIPINTI, Alfonso RUOCCO
  • Patent number: 10906814
    Abstract: A method for producing nanoplates derived from a layered material, includes the steps: (a) mixing particles of said layered material with a carrier liquid to form a dispersion of said particles in said carrier liquid; (b) pressurizing the dispersion to a pressure of at least 10 kpsi; and (c) forcing the dispersion along a microfluidic channel under said pressure, to apply a shear rate of at least 105 s?1 to said particles in the dispersion. Exfoliation of nanoplates from said particles is thereby caused. The nanoplates may be graphene nanoplates, for example. Steps (b) and (c) may be repeated for a number of cycles in order to promote exfoliation. The method may be carried out using a microfluidizer.
    Type: Grant
    Filed: October 7, 2016
    Date of Patent: February 2, 2021
    Assignee: CAMBRIDGE ENTERPRISE LIMITED
    Inventors: Panagiotis Karagiannidis, Stephen Anthony Hodge, Andrea Carlo Ferrari, Felice Torrisi
  • Publication number: 20200291192
    Abstract: A method for treating polymer particles is disclosed. Polymer particles and a liquid are provided. The method includes the following steps (a) and (b). (a) Mixing said polymer particles with said carrier liquid to form a dispersion of said particles in said carrier liquid at a concentration of at least 0.1 g/L, based on the volume of the dispersion. (b) Subjecting the dispersion to microfluidization treatment thereby causing particle stretching, particle size reduction and increasing the surface area per unit mass of the polymer particles. Also disclosed is a particulate composition comprising polymer particles mixed with nanoplates derived from a layered material, wherein the particulate composition has a BET surface area of at least 10 m2/g. Furthermore, there is disclosed a method for the manufacture of a component formed of a composite of a polymer with a dispersion of nanoplates. The particulate composition is provided as a precursor particulate.
    Type: Application
    Filed: September 21, 2018
    Publication date: September 17, 2020
    Inventors: Andrea Carlo Ferrari, Stephen Anthony Hodge, Panagiotis Karagiannidis, Yue Lin
  • Publication number: 20180312404
    Abstract: A method for producing nanoplates derived from a layered material, includes the steps: (a) mixing particles of said layered material with a carrier liquid to form a dispersion of said particles in said carrier liquid; (b) pressurizing the dispersion to a pressure of at least 10 kpsi; and (c) forcing the dispersion along a microfluidic channel under said pressure, to apply a shear rate of at least 105 s?1 to said particles in the dispersion. Exfoliation of nanoplates from said particles is thereby caused. The nanoplates may be graphene nanoplates, for example. Steps (b) and (c) may be repeated for a number of cycles in order to promote exfoliation. The method may be carried out using a microfluidizer.
    Type: Application
    Filed: October 7, 2016
    Publication date: November 1, 2018
    Inventors: Panagiotis KARAGIANNIDIS, Stephen Anthony HODGE, Andrea Carlo FERRARI, Felice TORRISI
  • Patent number: 9718972
    Abstract: An ink disclosed herein comprises a carrier liquid with a dispersion of flakes derived from a layered material. The thickness of each flake depends on the number of layers of the layered material in the flake. The thickness distribution of the flakes includes: at least 20% by number of single layer flakes; at least 40% by number cumulatively of single, double and triple layer flakes; or not more than 40% by number of flakes having ten or more layers. The layered material is selected from one or more of elemental materials such as graphene (typically derived from pristine graphite), metals (e.g., NiTe2, VSe2), semi-metals (e.g., WTa2, TcS2), semiconductors (e.g., WS2, WSe2, MoS2, MoTe2, TaS2, RhTe2, PdTe2), insulators (e.g., h-BN, HfS2), superconductors (e.g., NbS2, NbSe2, NbTe2, TaSe2) and topological insulators and thermo-electrics (e.g., Bi2Se3, Bi2Te3). Also disclosed are methods of manufacturing suitable inks and uses of the inks.
    Type: Grant
    Filed: October 22, 2013
    Date of Patent: August 1, 2017
    Assignee: Cambridge Enterprise Limited
    Inventors: Felice Torrisi, Tawfique Hasan, Francesco Bonaccorso, Andrea Carlo Ferrari
  • Publication number: 20150337145
    Abstract: An ink disclosed herein comprises a carrier liquid with a dispersion of flakes derived from a layered material. The thickness of each flake depends on the number of layers of the layered material in the flake. The thickness distribution of the flakes includes: at least 20% by number of single layer flakes; at least 40% by number cumulatively of single, double and triple layer flakes; or not more than 40% by number of flakes having ten or more layers. The layered material is selected from one or more of elemental materials such as graphene (typically derived from pristine graphite), metals (e.g., NiTe2, VSe2), semi-metals (e.g., WTa2, TcS2), semiconductors (e.g., WS2, WSe2, MoS2, MoTe2, TaS2, RhTe2, PdTe2), insulators (e.g., h-BN, HfS2), superconductors (e.g., NbS2, NbSe2, NbTe2, TaSe2) and topological insulators and thermo-electrics (e.g., Bi2Se3, Bi2Te3). Also disclosed are methods of manufacturing suitable inks and uses of the inks.
    Type: Application
    Filed: October 22, 2013
    Publication date: November 26, 2015
    Inventors: Felice TORRISI, Tawfique HASAN, Francesco BONACCORSO, Andrea Carlo FERRARI