Patents by Inventor Andrea Gotti

Andrea Gotti has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230343815
    Abstract: Methods, apparatuses, and systems related to depositing a storage node material are described. An example method includes forming a semiconductor structure including a support structure having a first silicate material over a bottom nitride material, a first nitride material over the first silicate material, a second silicate material over the first nitride material, and a second nitride material over the second silicate material. The method further includes removing portions of the second nitride material. The method further includes depositing a third silicate material over the second nitride material and a portion of the second silicate material. The method further includes forming an opening through the semiconductor structure. The method further includes depositing a storage node material within the opening.
    Type: Application
    Filed: April 22, 2022
    Publication date: October 26, 2023
    Inventors: Ryan L. Meyer, Vinay Nair, Andrea Gotti, Kevin Shea, Kyle R. Knori
  • Patent number: 11641788
    Abstract: Methods, systems, and devices for a resistive interface material are described. A memory device may be fabricated using a sequence of steps that include forming a stack of materials by depositing a first metal layer, depositing a first electrode layer on the metal layer, depositing a memory material on the first electrode layer to form one or more memory cells, depositing a second electrode layer on the memory material, and depositing a second metal layer on the second electrode layer. A lamina (or multiple) having a relatively high resistivity may be included in the stack of materials to reduce or eliminate a current spike that may otherwise occur across the memory cells during an access operation.
    Type: Grant
    Filed: December 9, 2020
    Date of Patent: May 2, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Andrea Gotti, Dale W. Collins, Fabio Pellizzer
  • Publication number: 20230113960
    Abstract: Methods, systems, and devices for techniques for manufacturing a double electrode memory array are described. A memory device may be fabricated using a sequence of fabrication steps that include depositing a first stack of materials including a conductive layer, an interface layer, and a first electrode layer. The first stack of materials may be etched to form a first set of trenches. A second stack of materials may be deposited on top of the first stack of materials. The second stack may include a second electrode layer in contact with the first electrode layer, a storage layer, and a third electrode layer. The second stack of materials may be etched to form a second set of trenches above the first set of trenches, and filled with a sealing layer and a dielectric material. The sealing layer may not extend substantially into the first set of trenches.
    Type: Application
    Filed: October 12, 2021
    Publication date: April 13, 2023
    Inventors: Anna Maria Conti, Andrea Gotti, Pavan Reddy K. Aella
  • Patent number: 11575085
    Abstract: Methods, systems, and devices for techniques for forming memory structures are described. Forming a memory structure may include etching a stack of material including a conductive line, a first electrode and a sacrificial material to divide the stack of material into multiple sections. The process may further include depositing an oxide material in each of the first quantity of channels to form multiple oxide materials. The sacrificial material may be etched to form a second channel between two oxide materials of the multiple oxide materials. Memory material may be deposited over the two oxide materials and the second channel, which may create a void in the second channel between the memory material and the first electrode. The memory material may be heated to fill the void in the second channel.
    Type: Grant
    Filed: February 2, 2021
    Date of Patent: February 7, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Andrea Gotti, Pavan Reddy K. Aella, Dale W. Collins
  • Patent number: 11545623
    Abstract: Methods, systems, and devices for fabrication of memory cells are described. An electrode layer may have an initial thickness variation after being formed. The electrode layer may be smoothened prior to forming additional layers of a memory cell, thus decreasing the thickness variation. The subsequent layer fabricated may have a thickness variation that may be dependent on the thickness variation of the electrode layer. By decreasing the thickness variation of the electrode layer prior to forming the subsequent layer, the subsequent layer may also have a decreased thickness variation. The decreased thickness variation of the subsequent layer may impact the electrical behavior of memory cells formed from the subsequent layer. In some cases, the decreased thickness variation of the subsequent layer may allow for more predictable voltage thresholds for such memory cells, thus increasing the read windows for the memory cells.
    Type: Grant
    Filed: October 8, 2020
    Date of Patent: January 3, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Pengyuan Zheng, Yongjun J. Hu, Yao Jin, Hongqi Li, Andrea Gotti
  • Patent number: 11538988
    Abstract: A memory cell design is disclosed. The memory cell structure includes phase change and selector layers stacked between top and bottom electrodes. An ohmic contact may be included between the phase change and selector layers. A multi-layer liner structure is provided on sidewalls of the phase change layer. In some such cases, the liner structure is above and not on sidewalls of the selector layer. The liner structure includes a first dielectric layer, and a second dielectric layer on the first dielectric layer. The liner structure includes a third dielectric layer on the second dielectric layer and that is sacrificial in nature, and may not be present in the final structure. The second dielectric layer comprises a high-k dielectric material or a metal silicate material. The second dielectric layer protects the phase change layer from lateral erosion and physical vertical etch and provides etch selectivity during the fabrication process.
    Type: Grant
    Filed: March 7, 2019
    Date of Patent: December 27, 2022
    Assignee: Intel Corporation
    Inventors: Santanu Sarkar, Andrea Gotti, Adam William Saxler
  • Publication number: 20220376176
    Abstract: An electronic device comprising a stack structure comprising one or more stacks of materials and a metal oxide material adjacent to the stacks of materials. The materials of the stacks comprise one or more chalcogenide materials. The metal oxide material comprises aluminum oxide, aluminum silicate, hafnium oxide, hafnium silicate, zirconium oxide, zirconium silicate, or a combination thereof and the metal oxide material extends continuously from an upper portion of the one or more stacks of materials to a lower portion of the one or more stacks of materials. Additional electronic devices are disclosed, as are related systems and methods of forming an electronic device.
    Type: Application
    Filed: August 8, 2022
    Publication date: November 24, 2022
    Inventors: Santanu Sarkar, Robert K. Grubbs, Farrell M. Good, Adam W. Saxler, Andrea Gotti
  • Publication number: 20220301623
    Abstract: Systems, methods, and apparatus related to dynamically determining read voltages used in memory devices. In one approach, a memory device has a memory array including memory cells. One or more resistors are formed as part of the memory array. A memory controller increments a counter as write operations are performed on the memory cells. When the counter reaches a limit, a write operation is performed on the resistors. The write operation applies voltages to the resistors similarly as applied to the memory cells over time during normal operation. When performing a read operation, a current is applied to one or more of the resistors to determine a boost voltage. When reading the memory cells, a read voltage is adjusted based on the boost voltage. The memory cells are read using the adjusted read voltage.
    Type: Application
    Filed: June 7, 2022
    Publication date: September 22, 2022
    Inventors: Nicola Ciocchini, Andrea Gotti
  • Patent number: 11444243
    Abstract: An electronic device comprising a stack structure comprising one or more stacks of materials and a metal oxide material adjacent to the stacks of materials. The materials of the stacks comprise one or more chalcogenide materials. The metal oxide material comprises aluminum oxide, aluminum silicate, hafnium oxide, hafnium silicate, zirconium oxide, zirconium silicate, or a combination thereof and the metal oxide material extends continuously from an upper portion of the one or more stacks of materials to a lower portion of the one or more stacks of materials. Additional electronic devices are disclosed, as are related systems and methods of forming an electronic device.
    Type: Grant
    Filed: October 28, 2019
    Date of Patent: September 13, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Santanu Sarkar, Robert K. Grubbs, Farrell M. Good, Adam W. Saxler, Andrea Gotti
  • Patent number: 11373705
    Abstract: Systems, methods, and apparatus related to dynamically determining read voltages used in memory devices. In one approach, a memory device has a memory array including memory cells. One or more resistors are formed as part of the memory array. A memory controller increments a counter as write operations are performed on the memory cells. When the counter reaches a limit, a write operation is performed on the resistors. The write operation applies voltages to the resistors similarly as applied to the memory cells over time during normal operation. When performing a read operation, a current is applied to one or more of the resistors to determine a boost voltage. When reading the memory cells, a read voltage is adjusted based on the boost voltage. The memory cells are read using the adjusted read voltage.
    Type: Grant
    Filed: November 23, 2020
    Date of Patent: June 28, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Nicola Ciocchini, Andrea Gotti
  • Publication number: 20220181549
    Abstract: Methods, systems, and devices for a resistive interface material are described. A memory device may be fabricated using a sequence of steps that include forming a stack of materials by depositing a first metal layer, depositing a first electrode layer on the metal layer, depositing a memory material on the first electrode layer to form one or more memory cells, depositing a second electrode layer on the memory material, and depositing a second metal layer on the second electrode layer. A lamina (or multiple) having a relatively high resistivity may be included in the stack of materials to reduce or eliminate a current spike that may otherwise occur across the memory cells during an access operation.
    Type: Application
    Filed: December 9, 2020
    Publication date: June 9, 2022
    Inventors: Andrea Gotti, Dale W. Collins, Fabio Pellizzer
  • Publication number: 20220165333
    Abstract: Systems, methods, and apparatus related to dynamically determining read voltages used in memory devices. In one approach, a memory device has a memory array including memory cells. One or more resistors are formed as part of the memory array. A memory controller increments a counter as write operations are performed on the memory cells. When the counter reaches a limit, a write operation is performed on the resistors. The write operation applies voltages to the resistors similarly as applied to the memory cells over time during normal operation. When performing a read operation, a current is applied to one or more of the resistors to determine a boost voltage. When reading the memory cells, a read voltage is adjusted based on the boost voltage. The memory cells are read using the adjusted read voltage.
    Type: Application
    Filed: November 23, 2020
    Publication date: May 26, 2022
    Inventors: Nicola Ciocchini, Andrea Gotti
  • Patent number: 11195998
    Abstract: A memory structure can include a memory cell and a first barrier layer having a maximum hydrogen diffusion coefficient of 1×10?17 cm2/s, said first barrier layer adjacent to the memory cell to minimize contaminant movement to or from the memory cell.
    Type: Grant
    Filed: June 8, 2020
    Date of Patent: December 7, 2021
    Assignee: Intel Corporation
    Inventors: Karthik Sarpatwari, Dale Collins, Anna Maria Conti, Fred Daniel Gealy, III, Andrea Gotti, Swapnil Lengade, Stephen Russell
  • Patent number: 11094879
    Abstract: Disclosed technology relates generally to integrated circuits, and more particularly, to structures incorporating and methods of forming metal lines including tungsten and carbon, such as conductive lines for memory arrays. In one aspect, a memory device comprises a lower conductive line extending in a first direction and an upper conductive line extending in a second direction and crossing the lower conductive line, wherein at least one of the upper and lower conductive lines comprises tungsten and carbon. The memory device additionally comprises a memory cell stack interposed at an intersection between the upper and lower conductive lines. The memory cell stack includes a first active element over the lower conductive line and a second active element over the first active element, wherein one of the first and second active elements comprises a storage element and the other of the first and second active elements comprises a selector element.
    Type: Grant
    Filed: September 4, 2018
    Date of Patent: August 17, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Andrea Gotti, F. Daniel Gealy, Innocenzo Tortorelli, Enrico Varesi
  • Patent number: 11081644
    Abstract: Apparatuses and methods of manufacture are disclosed for phase change memory cell electrodes having a conductive barrier material. In one example, apparatus includes a first chalcogenide structure and a second chalcogenide structure stacked together with the first chalcogenide structure. A first electrode portion is coupled to the first chalcogenide structure, and a second electrode portion is coupled to the second chalcogenide structure. An electrically conductive barrier material is disposed between the first and second electrode portions.
    Type: Grant
    Filed: July 25, 2018
    Date of Patent: August 3, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Swapnil A. Lengade, John M. Meldrim, Andrea Gotti
  • Publication number: 20210234097
    Abstract: Methods, systems, and devices for techniques for forming memory structures are described. Forming a memory structure may include etching a stack of material including a conductive line, a first electrode and a sacrificial material to divide the stack of material into multiple sections. The process may further include depositing an oxide material in each of the first quantity of channels to form multiple oxide materials. The sacrificial material may be etched to form a second channel between two oxide materials of the multiple oxide materials. Memory material may be deposited over the two oxide materials and the second channel, which may create a void in the second channel between the memory material and the first electrode. The memory material may be heated to fill the void in the second channel.
    Type: Application
    Filed: February 2, 2021
    Publication date: July 29, 2021
    Inventors: Andrea Gotti, Pavan Reddy K. Aella, Dale W. Collins
  • Patent number: 11038107
    Abstract: A semiconductor structure includes a plurality of stack structures overlying a substrate. Each stack structure includes a first chalcogenide material over a conductive material overlying the substrate, an electrode over the first chalcogenide material, a second chalcogenide material over the electrode, a liner on sidewalls of at least one of the first chalcogenide material or the second chalcogenide material, and a dielectric material over and in contact with sidewalls of the electrode and in contact with the liner. Related semiconductor devices and systems, methods of forming the semiconductor structure, semiconductor device, and systems, and methods of forming the liner in situ are disclosed.
    Type: Grant
    Filed: November 28, 2018
    Date of Patent: June 15, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Dale W. Collins, Andrea Gotti, F. Daniel Gealy, Tuman E. Allen, Swapnil Lengade
  • Publication number: 20210126193
    Abstract: An electronic device comprising a stack structure comprising one or more stacks of materials and a metal oxide material adjacent to the stacks of materials. The materials of the stacks comprise one or more chalcogenide materials. The metal oxide material comprises aluminum oxide, aluminum silicate, hafnium oxide, hafnium silicate, zirconium oxide, zirconium silicate, or a combination thereof and the metal oxide material extends continuously from an upper portion of the one or more stacks of materials to a lower portion of the one or more stacks of materials. Additional electronic devices are disclosed, as are related systems and methods of forming an electronic device.
    Type: Application
    Filed: October 28, 2019
    Publication date: April 29, 2021
    Inventors: Santanu Sarkar, Robert K. Grubbs, Farrell M. Good, Adam W. Saxler, Andrea Gotti
  • Publication number: 20210098697
    Abstract: Methods, systems, and devices for fabrication of memory cells are described. An electrode layer may have an initial thickness variation after being formed. The electrode layer may be smoothened prior to forming additional layers of a memory cell, thus decreasing the thickness variation. The subsequent layer fabricated may have a thickness variation that may be dependent on the thickness variation of the electrode layer. By decreasing the thickness variation of the electrode layer prior to forming the subsequent layer, the subsequent layer may also have a decreased thickness variation. The decreased thickness variation of the subsequent layer may impact the electrical behavior of memory cells formed from the subsequent layer. In some cases, the decreased thickness variation of the subsequent layer may allow for more predictable voltage thresholds for such memory cells, thus increasing the read windows for the memory cells.
    Type: Application
    Filed: October 8, 2020
    Publication date: April 1, 2021
    Inventors: Pengyuan Zheng, Yongjun J. Hu, Yao Jin, Hongqi Li, Andrea Gotti
  • Patent number: 10957855
    Abstract: Apparatuses and methods of manufacture are disclosed for phase change memory cell electrodes having a conductive barrier material. In one example, an apparatus includes a first chalcogenide structure and a second chalcogenide structure stacked together with the first chalcogenide structure. A first electrode portion is coupled to the first chalcogenide structure, and a second electrode portion is coupled to the second chalcogenide structure. An electrically conductive barrier material is disposed between the first and second electrode portions.
    Type: Grant
    Filed: July 19, 2018
    Date of Patent: March 23, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Swapnil A. Lengade, John M. Meldrim, Andrea Gotti