Patents by Inventor Andrea M. Armani

Andrea M. Armani has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220268691
    Abstract: Many samples (inorganic and organic) have magnetic properties. This adaptor which is comprised of an electromagnet and a sample holder (slide) can be directly mounted on a standard microscope (upright or inverted). The magnetic field is uniform across the sample and can be modified (due to the electromagnet design). The mount allows changing the field while simultaneously imaging the sample. Notably, the universality of the adaptor design will allow it to enable a wide range of investigations, impacting numerous fields.
    Type: Application
    Filed: February 22, 2022
    Publication date: August 25, 2022
    Inventors: Andrea M. ARMANI, Kylie TRETTNER
  • Patent number: 9791333
    Abstract: An all-optical fiber sensor apparatus includes a light source and an in-line fiber polarizer that polarizes light received from the light source. The in-line fiber polarizer outputs light in a first polarization state which is directed to a polarization-maintaining fiber. After receiving the light in a first polarization state, the polarization-maintaining fiber transmits the light such that the light exits as light in a second polarization state. During measurements, the polarization-maintaining fiber contacts a test sample. A compression device compresses the test sample. The compression device applies a time varying force to the test sample in which the force is sequentially increased. A polarimeter receives the light in a second polarization state and outputs polarization state data for the light in a second polarization state. Finally, a data processor is in communication with the polarimeter to receive and stores the polarization state data.
    Type: Grant
    Filed: June 10, 2016
    Date of Patent: October 17, 2017
    Assignee: University of Southern California
    Inventors: Andrea M. Armani, Mark C. Harrison, Alexa Watkins Hudnut
  • Publication number: 20170038267
    Abstract: An all-optical fiber sensor apparatus includes a light source and an in-line fiber polarizer that polarizes light received from the light source. The in-line fiber polarizer outputs light in a first polarization state which is directed to a polarization-maintaining fiber. After receiving the light in a first polarization state, the polarization-maintaining fiber transmits the light such that the light exits as light in a second polarization state. During measurements, the polarization-maintaining fiber contacts a test sample. A compression device compresses the test sample. The compression device applies a time varying force to the test sample in which the force is sequentially increased. A polarimeter receives the light in a second polarization state and outputs polarization state data for the light in a second polarization state. Finally, a data processor is in communication with the polarimeter to receive and stores the polarization state data.
    Type: Application
    Filed: June 10, 2016
    Publication date: February 9, 2017
    Inventors: ANDREA M. ARMANI, MARK C. HARRISON, ALEXA WATKINS HUDNUT
  • Patent number: 9116128
    Abstract: Micro-cavity resonant sensors have outer surfaces that are functionalized using click chemistry, e.g., involving a cycloaddition reaction of an alkyne functional group and an azide functional group. A first polymer linking element binds to an outer surface of the micro-cavity and has an azide functional group, which bonds to an alkyne functional group of a second polymer linking element as a result of a cycloaddition reaction. A functionalization element such as an antibody, antigen or protein for sensing a target molecule is bound to the second linking element.
    Type: Grant
    Filed: January 9, 2012
    Date of Patent: August 25, 2015
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Andrea M. Armani, Akinleye C. Alabi, Mark E. Davis, Richard C. Flagan, Scott E. Fraser
  • Patent number: 8310677
    Abstract: Micro-cavity gas or vapor sensors and gas or vapor detection methods. Optical energy is introduced into a resonant micro-cavity having a deformable coating such as a polymer. The coating swells or expands when it is exposed to or absorbs a gas or vapor, thereby changing the resonant wavelength of optical energy circulating within the micro-cavity/coating. Expansion or swelling of the coating may be reversible such that it contracts when gas or vapor diffuses from the coating. The coating deformation and/or a change of one or more optical properties of the optical energy circulating within the micro-cavity are used to detect the presence of the gas or vapor or molecules or particulates thereof.
    Type: Grant
    Filed: January 30, 2012
    Date of Patent: November 13, 2012
    Assignee: California Institute of Technology
    Inventors: Andrea M. Armani, Tsu-Te J. Su, Richard C. Flagan, Scott E. Fraser
  • Publication number: 20120120398
    Abstract: Micro-cavity gas or vapor sensors and gas or vapor detection methods. Optical energy is introduced into a resonant micro-cavity having a deformable coating such as a polymer. The coating swells or expands when it is exposed to or absorbs a gas or vapor, thereby changing the resonant wavelength of optical energy circulating within the micro-cavity/coating. Expansion or swelling of the coating may be reversible such that it contracts when gas or vapor diffuses from the coating.
    Type: Application
    Filed: January 30, 2012
    Publication date: May 17, 2012
    Applicant: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Andrea M. Armani, Tsu-Te J. Su, Richard C. Flagan, Scott E. Fraser
  • Publication number: 20120107177
    Abstract: Micro-cavity resonant sensors have outer surfaces that are functionalized using click chemistry, e.g., involving a cycloaddition reaction of an alkyne functional group and an azide functional group. A first polymer linking element binds to an outer surface of the micro-cavity and has an azide functional group, which bonds to an alkyne functional group of a second polymer linking element as a result of a cycloaddition reaction. A functionalization element such as an antibody, antigen or protein for sensing a target molecule is bound to the second linking element.
    Type: Application
    Filed: January 9, 2012
    Publication date: May 3, 2012
    Applicant: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Andrea M. Armani, Akinleye C. Alabi, Mark E. Davis, Richard C. Flagan, Scott E. Fraser
  • Patent number: 8107081
    Abstract: Micro-cavity gas or vapor sensors and gas or vapor detection methods. Optical energy is introduced into a resonant micro-cavity having a deformable coating such as a polymer. The coating swells or expands when it is exposed to or absorbs a gas or vapor, thereby changing the resonant wavelength of optical energy circulating within the micro-cavity/coating. Expansion or swelling of the coating may be reversible such that it contracts when gas or vapor diffuses from the coating. The coating deformation and/or a change of one or more optical properties of the optical energy circulating within the micro-cavity are used to detect the presence of the gas or vapor or molecules or particulates thereof.
    Type: Grant
    Filed: October 1, 2008
    Date of Patent: January 31, 2012
    Assignee: California Institute of Technology
    Inventors: Andrea M. Armani, Tsu-Te J. Su, Richard C. Flagan, Scott E. Fraser
  • Patent number: 8092855
    Abstract: Micro-cavity resonant sensors have outer surfaces that are functionalized using click chemistry, e.g., involving a cycloaddition reaction of an alkyne functional group and an azide functional group. A first polymer linking element binds to an outer surface of the micro-cavity and has an azide functional group, which bonds to an alkyne functional group of a second polymer linking element as a result of a cycloaddition reaction. A functionalization element such as an antibody, antigen or protein for sensing a target molecule is bound to the second linking element.
    Type: Grant
    Filed: November 26, 2008
    Date of Patent: January 10, 2012
    Assignee: California Institute of Technology
    Inventors: Andrea M. Armani, Akinleye C. Alabi, Mark E. Davis, Richard C. Flagan, Scott E. Fraser
  • Patent number: 7781217
    Abstract: Resonant sensors and methods of detecting specific molecules with enhanced sensitivity. Optical energy is introduced into a microcavity, such as a silica toroid-shaped microcavity. The microcavity sensor has a functionalized outer surface and a sufficiently high Q value to generate an evanescent optical field with increased intensity. A molecule bound to the functionalized outer surface interacts with the external optical field, thereby heating the microcavity and generating a detectable resonant wavelength shift, which indicates a small number of molecules, even a single molecule, without the use of fluorescent or metal labels. Resonant sensors and methods can also be used to detect specific molecules, even a single molecule, within an environment. One application is detecting very small quantities or a single molecule of heavy water in ordinary water.
    Type: Grant
    Filed: April 10, 2007
    Date of Patent: August 24, 2010
    Assignee: California Institute of Technology
    Inventors: Andrea M. Armani, Rajan P. Kulkarni, Scott E. Fraser, Kerry J. Vahala
  • Publication number: 20090214755
    Abstract: Micro-cavity resonant sensors have outer surfaces that are functionalized using click chemistry, e.g., involving a cycloaddition reaction of an alkyne functional group and an azide functional group. A first polymer linking element binds to an outer surface of the micro-cavity and has an azide functional group, which bonds to an alkyne functional group of a second polymer linking element as a result of a cycloaddition reaction. A functionalization element such as an antibody, antigen or protein for sensing a target molecule is bound to the second linking element.
    Type: Application
    Filed: November 26, 2008
    Publication date: August 27, 2009
    Inventors: Andrea M. Armani, Akinleye C. Alabi, Mark E. Davis, Richard C. Flagan, Scott E. Fraser
  • Publication number: 20090097031
    Abstract: Micro-cavity gas or vapor sensors and gas or vapor detection methods. Optical energy is introduced into a resonant micro-cavity having a deformable coating such as a polymer. The coating swells or expands when it is exposed to or absorbs a gas or vapor, thereby changing the resonant wavelength of optical energy circulating within the micro-cavity/coating. Expansion or swelling of the coating may be reversible such that it contracts when gas or vapor diffuses from the coating. The coating deformation and/or a change of one or more optical properties of the optical energy circulating within the micro-cavity are used to detect the presence of the gas or vapor or molecules or particulates thereof.
    Type: Application
    Filed: October 1, 2008
    Publication date: April 16, 2009
    Inventors: Andrea M. Armani, Tsu-te J. Su, Richard C. Flagan, Scott E. Fraser