Patents by Inventor Andrea MAHR

Andrea MAHR has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11793866
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: May 14, 2021
    Date of Patent: October 24, 2023
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Andrea Mahr, Toni Weinschenk, Oliver Schoor, Jens Fritsche, Harpreet Singh
  • Patent number: 11786583
    Abstract: A peptide consists of the amino acid sequence KLSPTVVGL (SEQ ID NO: 6) in the form of a pharmaceutically acceptable salt, in which the peptide has the ability to bind to an MHC class-I molecule and, when bound to MHC, is capable of being recognized by CD8 T cells. A composition contains a peptide consisting of the amino acid sequence KLSPTVVGL (SEQ ID NO: 6), an adjuvant, and a pharmaceutically acceptable carrier.
    Type: Grant
    Filed: April 30, 2021
    Date of Patent: October 17, 2023
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Toni Weinschenk, Andrea Mahr, Jens Fritsche, Phillip Mueller, Anita Wiebe, Sarah Kutscher
  • Patent number: 11786584
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor associated T-cell peptide epitopes, alone or in combination with other tumor associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: May 14, 2021
    Date of Patent: October 17, 2023
    Assignee: Immatics Biotechnologies GmbH
    Inventors: Andrea Mahr, Toni Weinschenk, Oliver Schoor, Jens Fritsche, Harpreet Singh, Phillip Mueller, Julia Leibold, Valentina Goldfinger
  • Patent number: 11779638
    Abstract: A method of eliciting an immune response in a patient who has a cancer includes administering to said patient a composition containing a population of activated T cells that selectively recognize the cancer cells in the patient that aberrantly express a peptide consisting of the amino acid sequence of IYVTSIEQI (SEQ ID NO: 214), in which the peptide is in a complex with an MHC molecule.
    Type: Grant
    Filed: June 29, 2022
    Date of Patent: October 10, 2023
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Toni Weinschenk, Andrea Mahr, Jens Fritsche, Phillip Mueller, Anita Wiebe, Sarah Kutscher
  • Publication number: 20230312679
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Application
    Filed: January 13, 2023
    Publication date: October 5, 2023
    Inventors: Andrea MAHR, Toni WEINSCHENK, Oliver SCHOOR, Jens FRITSCHE, Harpreet SINGH
  • Patent number: 11744882
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: June 25, 2021
    Date of Patent: September 5, 2023
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Andrea Mahr, Toni Weinschenk, Oliver Schoor, Jens Fritsche, Harpreet Singh
  • Publication number: 20230265158
    Abstract: A method of treating a patient who has hepatocellular carcinoma (HCC), colorectal carcinoma (CRC), glioblastoma (GB), gastric cancer (GC), esophageal cancer, NSCLC, pancreatic cancer (PC), renal cell carcinoma (RCC), benign prostate hyperplasia (BPH), prostate cancer (PCA), ovarian cancer (OC), melanoma, breast cancer (BRCA), CLL, Merkel cell carcinoma (MCC), SCLC, Non-Hodgkin lymphoma (NHL), AML, gallbladder cancer and cholangiocarcinoma (GBC, CCC), urinary bladder cancer (UBC), and uterine cancer (UEC) includes administering to said patient a composition containing a population of activated T cells that selectively recognize cells in the patient that aberrantly express a peptide.
    Type: Application
    Filed: November 11, 2022
    Publication date: August 24, 2023
    Inventors: Andrea MAHR, Toni WEINSCHENK, Oliver SCHOOR, Jens FRITSCHE, Harpreet SINGH, Lea STEVERMANN
  • Publication number: 20230235016
    Abstract: A method of treating a patient who has hepatocellular carcinoma (HCC), colorectal carcinoma (CRC), glioblastoma (GB), gastric cancer (GC), esophageal cancer, NSCLC, pancreatic cancer (PC), renal cell carcinoma (RCC), benign prostate hyperplasia (BPH), prostate cancer (PCA), ovarian cancer (OC), melanoma, breast cancer (BRCA), CLL, Merkel cell carcinoma (MCC), SCLC, Non-Hodgkin lymphoma (NHL), AML, gallbladder cancer and cholangiocarcinoma (GBC, CCC), urinary bladder cancer (UBC), and uterine cancer (UEC) includes administering to said patient a composition containing a population of activated T cells that selectively recognize cells in the patient that aberrantly express a peptide.
    Type: Application
    Filed: November 4, 2022
    Publication date: July 27, 2023
    Inventors: Andrea MAHR, Toni WEINSCHENK, Oliver SCHOOR, Jens FRITSCHE, Harpreet SINGH, Lea STEVERMANN
  • Publication number: 20230235015
    Abstract: A method of treating a patient who has hepatocellular carcinoma (HCC), colorectal carcinoma (CRC), glioblastoma (GB), gastric cancer (GC), esophageal cancer, NSCLC, pancreatic cancer (PC), renal cell carcinoma (RCC), benign prostate hyperplasia (BPH), prostate cancer (PCA), ovarian cancer (OC), melanoma, breast cancer (BRCA), CLL, Merkel cell carcinoma (MCC), SCLC, Non-Hodgkin lymphoma (NHL), AML, gallbladder cancer and cholangiocarcinoma (GBC, CCC), urinary bladder cancer (UBC), and uterine cancer (UEC) includes administering to said patient a composition containing a population of activated T cells that selectively recognize cells in the patient that aberrantly express a peptide.
    Type: Application
    Filed: November 4, 2022
    Publication date: July 27, 2023
    Inventors: Andrea MAHR, Toni WEINSCHENK, Oliver SCHOOR, Jens FRITSCHE, Harpreet SINGH, Lea STEVERMANN
  • Publication number: 20230235014
    Abstract: A method of treating a patient who has hepatocellular carcinoma (HCC), colorectal carcinoma (CRC), glioblastoma (GB), gastric cancer (GC), esophageal cancer, NSCLC, pancreatic cancer (PC), renal cell carcinoma (RCC), benign prostate hyperplasia (BPH), prostate cancer (PCA), ovarian cancer (OC), melanoma, breast cancer (BRCA), CLL, Merkel cell carcinoma (MCC), SCLC, Non-Hodgkin lymphoma (NHL), AML, gallbladder cancer and cholangiocarcinoma (GBC, CCC), urinary bladder cancer (UBC), and uterine cancer (UEC) includes administering to said patient a composition containing a population of activated T cells that selectively recognize cells in the patient that aberrantly express a peptide.
    Type: Application
    Filed: November 4, 2022
    Publication date: July 27, 2023
    Inventors: Andrea MAHR, Toni WEINSCHENK, Oliver SCHOOR, Jens FRITSCHE, Harpreet SINGH, Lea STEVERMANN
  • Publication number: 20230227517
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Application
    Filed: January 24, 2023
    Publication date: July 20, 2023
    Inventors: Andrea MAHR, Toni WEINSCHENK, Helen HOERZER, Oliver SCHOOR, Jens FRITSCHE, Harpreet SINGH
  • Publication number: 20230226161
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Application
    Filed: January 24, 2023
    Publication date: July 20, 2023
    Inventors: Andrea MAHR, Toni WEINSCHENK, Oliver SCHOOR, Jens FRITSCHE, Harpreet SINGH
  • Patent number: 11702460
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: October 2, 2019
    Date of Patent: July 18, 2023
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Andrea Mahr, Toni Weinschenk, Oliver Schoor, Jens Fritsche, Harpreet Singh, Lea Stevermann
  • Publication number: 20230220045
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Application
    Filed: January 13, 2023
    Publication date: July 13, 2023
    Inventors: Andrea MAHR, Toni WEINSCHENK, Oliver SCHOOR, Jens FRITSCHE, Harpreet SINGH
  • Publication number: 20230212244
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T-cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Application
    Filed: December 8, 2022
    Publication date: July 6, 2023
    Inventors: Oliver SCHOOR, Andrea MAHR, Toni WEINSCHENK, Anita WIEBE, Jens FRITSCHE, Harpreet SINGH
  • Publication number: 20230201321
    Abstract: The present description relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present description relates to the immunotherapy of cancer. The present description further relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T-cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Application
    Filed: August 17, 2022
    Publication date: June 29, 2023
    Inventors: Toni WEINSCHENK, Oliver SCHOOR, Andrea MAHR
  • Publication number: 20230203113
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T-cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Application
    Filed: December 8, 2022
    Publication date: June 29, 2023
    Inventors: Oliver SCHOOR, Andrea MAHR, Toni WEINSCHENK, Anita WIEBE, Jens FRITSCHE, Harpreet SINGH
  • Publication number: 20230203114
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T-cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Application
    Filed: December 8, 2022
    Publication date: June 29, 2023
    Inventors: Oliver SCHOOR, Andrea MAHR, Toni WEINSCHENK, Anita WIEBE, Jens FRITSCHE, Harpreet SINGH
  • Publication number: 20230203127
    Abstract: A method of treating a patient who has hepatocellular carcinoma (HCC), colorectal carcinoma (CRC), glioblastoma (GB), gastric cancer (GC), esophageal cancer, NSCLC, pancreatic cancer (PC), renal cell carcinoma (RCC), benign prostate hyperplasia (BPH), prostate cancer (PCA), ovarian cancer (OC), melanoma, breast cancer (BRCA), CLL, Merkel cell carcinoma (MCC), SCLC, Non-Hodgkin lymphoma (NHL), AML, gallbladder cancer and cholangiocarcinoma (GBC, CCC), urinary bladder cancer (UBC), and uterine cancer (UEC) includes administering to said patient a composition containing a population of activated T cells that selectively recognize cells in the patient that aberrantly express a peptide.
    Type: Application
    Filed: November 11, 2022
    Publication date: June 29, 2023
    Inventors: Andrea MAHR, Toni WEINSCHENK, Oliver SCHOOR, Jens FRITSCHE, Harpreet SINGH, Lea STEVERMANN
  • Patent number: 11679147
    Abstract: A method of eliciting an immune response in a patient who has a cancer includes administering to said patient a composition containing a population of activated T cells that selectively recognize the cancer cells in the patient that aberrantly express a peptide consisting of the amino acid sequence of GVLPGLVGV (SEQ ID NO: 56), in which the peptide is in a complex with an MHC molecule.
    Type: Grant
    Filed: June 29, 2022
    Date of Patent: June 20, 2023
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Toni Weinschenk, Andrea Mahr, Jens Fritsche, Phillip Mueller, Anita Wiebe, Sarah Kutscher