Patents by Inventor Andrea Ruffini

Andrea Ruffini has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11357886
    Abstract: The present disclosure relates to a hydroxyapatite obtained from porous wood, having high compressive strength and dimensions suitable for clinical applications. The porous wood has a porosity of between about 60% and about 95%, said porosity being measured after subjecting the wood to a step of pyrolysis, and is selected from among rattan, pine, abachi, balsa, sipo, oak, rosewood, kempas and walnut wood. The hydroxyapatite may be substituted with one or more ions such as magnesium, strontium, silicon, titanium, carbonate, potassium, sodium, silver, gallium, copper, iron, zinc, manganese, europium, gadolinium. Also disclosed is a bone substitute comprising hydroxyapatite obtained from porous wood. The bone substitute is utilized for the substitution and regeneration of a bone or a bone portion, preferably for bones subjected to mechanical loads, such as long bones of the leg and arm, preferably the tibia, fibula, femur, humerus and radius.
    Type: Grant
    Filed: May 15, 2020
    Date of Patent: June 14, 2022
    Assignee: GREENBONE ORTHO S.R.L.
    Inventors: Anna Tampieri, Simone Sprio, Andrea Ruffini
  • Patent number: 11213605
    Abstract: The present disclosure relates to a hydroxyapatite obtained from porous wood, having high compressive strength and dimensions suitable for clinical applications. The porous wood has a porosity of between about 60% and about 95%, said porosity being measured after subjecting the wood to a step of pyrolysis, and is selected from among rattan, pine, abachi, balsa, sipo, oak, rosewood, kempas and walnut wood. The hydroxyapatite may be substituted with one or more ions such as magnesium, strontium, silicon, titanium, carbonate, potassium, sodium, silver, gallium, copper, iron, zinc, manganese, europium, gadolinium. Also disclosed is a bone substitute comprising hydroxyapatite obtained from porous wood. The bone substitute is utilized for the substitution and regeneration of a bone or a bone portion, preferably for bones subjected to mechanical loads, such as long bones of the leg and arm, preferably the tibia, fibula, femur, humerus and radius.
    Type: Grant
    Filed: May 15, 2020
    Date of Patent: January 4, 2022
    Assignee: GREENBONE ORTHO S.P.A.
    Inventors: Anna Tampieri, Simone Sprio, Andrea Ruffini
  • Publication number: 20210316263
    Abstract: A system for chemical transformation of 3D state materials is disclosed wherein, a reaction group having a main body arranged to shape a reaction chamber in which a component configured to support a sample of 3D state arranged to be chemically transform is expected. The system further includes an oven arranged to heat the reaction chamber and a GAS supply group arranged to release a first gas in the reaction chamber and/or a casing component, inside the main body, which has a chemical agent suitable for releasing a second gas into the reaction chamber. The main body has at least two turbines arranged to converge into the reaction chamber, the first and/or the second gas on the samples. The invention relates also to a method for chemical transformation of 3D state materials.
    Type: Application
    Filed: July 26, 2019
    Publication date: October 14, 2021
    Applicant: GREENBONE ORTHO S.P.A.
    Inventors: Lorenzo Giuseppe PRADELLA, Alberto BALLARDINI, Lorenzo SANTI, Anna TAMPIERI, Simone SPRIO, Andrea RUFFINI
  • Publication number: 20200276356
    Abstract: The present disclosure relates to a hydroxyapatite obtained from porous wood, having high compressive strength and dimensions suitable for clinical applications. The porous wood has a porosity of between about 60% and about 95%, said porosity being measured after subjecting the wood to a step of pyrolysis, and is selected from among rattan, pine, abachi, halsa, sipo, oak, rosewood, kempas and walnut wood. The hydroxyapatite may be substituted with one or more ions such as magnesium, strontium, silicon, titanium, carbonate, potassium, sodium, silver, gallium, copper, iron, zinc, manganese, europium, gadolinium. Also disclosed is a bone substitute comprising hydroxyapatite obtained from porous wood. The bone substitute is utilized for the substitution and regeneration of a bone or a bone portion, preferably for bones subjected to mechanical loads, such as long bones of the leg and arm, preferably the tibia, fibula, femur, humerus and radius.
    Type: Application
    Filed: May 15, 2020
    Publication date: September 3, 2020
    Inventors: Anna TAMPIERI, Simone Sprio, Andrea Ruffini
  • Publication number: 20200276355
    Abstract: The present disclosure relates to a hydroxyapatite obtained from porous wood, having high compressive strength and dimensions suitable for clinical applications. The porous wood has a porosity of between about 60% and about 95%, said porosity being measured after subjecting the wood to a step of pyrolysis, and is selected from among rattan, pine, abachi, balsa, sipo, oak, rosewood, kempas and walnut wood. The hydroxyapatite may be substituted with one or more ions such as magnesium, strontium, silicon, titanium, carbonate, potassium, sodium, silver, gallium, copper, iron, zinc, manganese, europium, gadolinium. Also disclosed is a bone substitute comprising hydroxyapatite obtained from porous wood. The bone substitute is utilized for the substitution and regeneration of a bone or a bone portion, preferably for bones subjected to mechanical loads, such as long bones of the leg and arm, preferably the tibia, fibula, femur, humerus and radius.
    Type: Application
    Filed: May 15, 2020
    Publication date: September 3, 2020
    Inventors: Anna TAMPIERI, Simone SPRIO, Andrea RUFFINI
  • Patent number: 10688218
    Abstract: The present disclosure relates to a hydroxyapatite obtained from porous wood, having high compressive strength and dimensions suitable for clinical applications. The porous wood has a porosity of between about 60% and about 95%, said porosity being measured after subjecting the wood to a step of pyrolysis, and is selected from among rattan, pine, abachi, balsa, sipo, oak, rosewood, kempas and walnut wood. The hydroxyapatite may be substituted with one or more ions such as magnesium, strontium, silicon, titanium, carbonate, potassium, sodium, silver, gallium, copper, iron, zinc, manganese, europium, gadolinium. Also disclosed is a bone substitute comprising hydroxyapatite obtained from porous wood. The bone substitute is utilized for the substitution and regeneration of a bone or a bone portion, preferably for bones subjected to mechanical loads, such as long bones of the leg and arm, preferably the tibia, fibula, femur, humerus and radius.
    Type: Grant
    Filed: August 3, 2016
    Date of Patent: June 23, 2020
    Assignee: GREENBONE ORTHO S.R.L.
    Inventors: Anna Tampieri, Simone Sprio, Andrea Ruffini
  • Publication number: 20190008997
    Abstract: The present disclosure relates to a hydroxyapatite obtained from porous wood, having high compressive strength and dimensions suitable for clinical applications. The porous wood has a porosity of between about 60% and about 95%, said porosity being measured after subjecting the wood to a step of pyrolysis, and is selected from among rattan, pine, abachi, balsa, sipo, oak, rosewood, kempas and walnut wood. The hydroxyapatite may be substituted with one or more ions such as magnesium, strontium, silicon, titanium, carbonate, potassium, sodium, silver, gallium, copper, iron, zinc, manganese, europium, gadolinium. Also disclosed is a bone substitute comprising hydroxyapatite obtained from porous wood. The bone substitute is utilized for the substitution and regeneration of a bone or a bone portion, preferably for bones subjected to mechanical loads, such as long bones of the leg and arm, preferably the tibia, fibula, femur, humerus and radius.
    Type: Application
    Filed: August 3, 2016
    Publication date: January 10, 2019
    Inventors: Anna TAMPIERI, Simone SPRIO, Andrea RUFFINI
  • Patent number: 9326948
    Abstract: The present invention relates to a bone substitute comprising a core based on hydroxyapatite (HA), obtained from at least one porous wood, or based on collagen fibers and hydroxyapatite, and a shell, based on hydroxyapatite (HA) or silicon carbide (SiC), obtained from at least one wood having a lower porosity than the at least one wood of the core. The porous wood has a total porosity of between 60% and 95%, preferably between 65% and 85%, and it is selected from amongst the choices of rattan, pine, abachi and balsa wood. The wood of the shell has a porosity of between 20% and 60%, preferably between 30% and 50%. The bone substitute is utilized for the substitution and regeneration of bone, preferably for bones subjected to mechanical loads, such as long bones of the leg and arm, preferably the tibia, metatarsus, femur, humerus or radius.
    Type: Grant
    Filed: November 8, 2011
    Date of Patent: May 3, 2016
    Assignee: CONSIGLIO NAZIONALE DELLE RICERCHE
    Inventors: Anna Tampieri, Simone Sprio, Andrea Ruffini, Julia Will, Peter Greil, Frank Muller, Julian Martinez Fernandez, Carmen Torres Raya, Francisco Manuel Varela Feria, Joaquin Ramirez Rico, Marie-Francoise Harmand
  • Publication number: 20140134258
    Abstract: The present invention relates to a bone substitute comprising a core based on hydroxyapatite (HA), obtained from at least one porous wood, or based on collagen fibres and hydroxyapatite, and a shell, based on hydroxyapatite (HA) or silicon carbide (SiC), obtained from at least one wood having a lower porosity than the at least one wood of the core. The porous wood has a total porosity of between 60% and 95%, preferably between 65% and 85%, and it is selected from amongst the choices of rattan, pine, abachi and balsa wood. The wood of the shell has a porosity of between 20% and 60%, preferably between 30% and 50%. The bone substitute is utilized for the substitution and regeneration of bone, preferably for bones subjected to mechanical loads, such as long bones of the leg and arm, preferably the tibia, metatarsus, femur, humerus or radius.
    Type: Application
    Filed: November 8, 2011
    Publication date: May 15, 2014
    Applicant: CONSIGLIO NAZIONALE DELLE RICERCHE
    Inventors: Anna Tampieri, Simone Sprio, Andrea Ruffini, Julia Will, Peter Greil, Frank Muller, Julian Martinez Fernandez, Carmen Torres Raya, Francisco Manuel Varela Feria, Joaquin Ramirez Rico, Marie-Francoise Harmand