Patents by Inventor Andrea Weidlich

Andrea Weidlich has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230260206
    Abstract: The system obtains an indication of a shape of a cross-section of an elongated shape, and an orientation of the shape. Based on the shape of the cross-section of the elongated shape and the orientation of the shape, the system creates a nonuniform distribution of random numbers mapping uniformly distributed input values to multiple points on the surface of the elongated shape. The system provides an input value randomly selected from a uniform distribution of random numbers to the nonuniform distribution of random numbers to obtain a point among the multiple sample points on the surface of the elongated shape. The system applies a function to the input value to obtain an indication of a normal associated with the sample point among the multiple sample points. Finally, the system computes an illumination of the elongated shape using the normal.
    Type: Application
    Filed: February 2, 2023
    Publication date: August 17, 2023
    Inventor: Andrea Weidlich
  • Patent number: 11600041
    Abstract: The system obtains an indication of a shape of a cross-section of an elongated shape, and an orientation of the shape. Based on the shape of the cross-section of the elongated shape and the orientation of the shape, the system creates a nonuniform distribution of random numbers mapping uniformly distributed input values to multiple points on the surface of the elongated shape. The system provides an input value randomly selected from a uniform distribution of random numbers to the nonuniform distribution of random numbers to obtain a point among the multiple sample points on the surface of the elongated shape. The system applies a function to the input value to obtain an indication of a normal associated with the sample point among the multiple sample points. Finally, the system computes an illumination of the elongated shape using the normal.
    Type: Grant
    Filed: December 8, 2021
    Date of Patent: March 7, 2023
    Assignee: Unity Technologies SF
    Inventor: Andrea Weidlich
  • Publication number: 20230013009
    Abstract: The system obtains an indication of a shape of a cross-section of an elongated shape, and an orientation of the shape. Based on the shape of the cross-section of the elongated shape and the orientation of the shape, the system creates a nonuniform distribution of random numbers mapping uniformly distributed input values to multiple points on the surface of the elongated shape. The system provides an input value randomly selected from a uniform distribution of random numbers to the nonuniform distribution of random numbers to obtain a point among the multiple sample points on the surface of the elongated shape. The system applies a function to the input value to obtain an indication of a normal associated with the sample point among the multiple sample points. Finally, the system computes an illumination of the elongated shape using the normal.
    Type: Application
    Filed: December 8, 2021
    Publication date: January 19, 2023
    Inventor: Andrea Weidlich
  • Publication number: 20220398800
    Abstract: Presented here is a system and method to increase the speed of computation of a volumetric scattering render technique. The volumetric scattering can include path tracing which simulates interactions between a virtual ray of light and a volume. The interaction can include reflection of the virtual ray of light of a particle within the volume. The system can obtain a threshold number of interactions between a virtual ray of light and a three-dimensional object through which the virtual ray of light is traveling. As the system performs the simulation, the system can compare a number of the interactions to the threshold number. Upon determining that the number of interactions is equal to or exceeds the threshold number, the system can terminate the simulation and approximate interactions between the virtual ray of light and the volume using a second rendering technique that is computationally less expensive than simulating the interactions.
    Type: Application
    Filed: March 18, 2022
    Publication date: December 15, 2022
    Inventors: Andrea Weidlich, Marc Droske
  • Patent number: 11481959
    Abstract: Disclosed is a method to derive the absorption coefficient, transparency, and/or the scattering coefficient from the user-specified parameters including roughness, phase function, index of refraction (IOR), and color by performing the simulation once, and storing the results of the simulation in an easy to retrieve representation, such as a lookup table, or an analytic function. To create the analytic function, one or more analytic functions can be fitted to the results of the simulation for the multiple parameters including roughness, phase function, IOR, and color. The lookup table can be combined with the analytic representation. For example, the lookup table can be used to represent the color, roughness, and phase function, while the IOR can be represented by an analytic function. For example, when the IOR is above 2, the lookup table becomes three-dimensional and the IOR is calculated using the analytic function.
    Type: Grant
    Filed: November 8, 2021
    Date of Patent: October 25, 2022
    Inventor: Andrea Weidlich
  • Patent number: 11315305
    Abstract: Presented here is a system and method to increase the speed of computation of a volumetric scattering render technique. The volumetric scattering can include path tracing which simulates interactions between a virtual ray of light and a volume. The interaction can include reflection of the virtual ray of light of a particle within the volume. The system can obtain a threshold number of interactions between a virtual ray of light and a three-dimensional object through which the virtual ray of light is traveling. As the system performs the simulation, the system can compare a number of the interactions to the threshold number. Upon determining that the number of interactions is equal to or exceeds the threshold number, the system can terminate the simulation and approximate interactions between the virtual ray of light and the volume using a second rendering technique that is computationally less expensive than simulating the interactions.
    Type: Grant
    Filed: September 22, 2021
    Date of Patent: April 26, 2022
    Assignee: Unity Technologies SF
    Inventors: Andrea Weidlich, Marc Droske
  • Patent number: 11227431
    Abstract: The system obtains an indication of a shape of a cross-section of an elongated shape, and an orientation of the shape. Based on the shape of the cross-section of the elongated shape and the orientation of the shape, the system creates a nonuniform distribution of random numbers mapping uniformly distributed input values to multiple points on the surface of the elongated shape. The system provides an input value randomly selected from a uniform distribution of random numbers to the nonuniform distribution of random numbers to obtain a point among the multiple sample points on the surface of the elongated shape. The system applies a function to the input value to obtain an indication of a normal associated with the sample point among the multiple sample points. Finally, the system computes an illumination of the elongated shape using the normal.
    Type: Grant
    Filed: July 15, 2021
    Date of Patent: January 18, 2022
    Assignee: Weta Digital Ltd.
    Inventor: Andrea Weidlich
  • Patent number: 11200731
    Abstract: Disclosed is a method to derive the absorption coefficient, transparency, and/or the scattering coefficient from the user-specified parameters including roughness, phase function, index of refraction (IOR), and color by performing the simulation once, and storing the results of the simulation in an easy to retrieve representation, such as a lookup table, or an analytic function. To create the analytic function, one or more analytic functions can be fitted to the results of the simulation for the multiple parameters including roughness, phase function, IOR, and color. The lookup table can be combined with the analytic representation. For example, the lookup table can be used to represent the color, roughness, and phase function, while the IOR can be represented by an analytic function. For example, when the IOR is above 2, the lookup table becomes three-dimensional and the IOR is calculated using the analytic function.
    Type: Grant
    Filed: June 4, 2021
    Date of Patent: December 14, 2021
    Inventor: Andrea Weidlich
  • Patent number: 11200732
    Abstract: Disclosed is a method to derive the absorption coefficient, transparency, and/or the scattering coefficient from the user-specified parameters including roughness, phase function, index of refraction (IOR), and color by performing the simulation once, and storing the results of the simulation in an easy to retrieve representation, such as a lookup table, or an analytic function. To create the analytic function, one or more analytic functions can be fitted to the results of the simulation for the multiple parameters including roughness, phase function, IOR, and color. The lookup table can be combined with the analytic representation. For example, the lookup table can be used to represent the color, roughness, and phase function, while the IOR can be represented by an analytic function. For example, when the IOR is above 2, the lookup table becomes three-dimensional and the IOR is calculated using the analytic function.
    Type: Grant
    Filed: June 1, 2021
    Date of Patent: December 14, 2021
    Inventor: Andrea Weidlich
  • Patent number: 11170557
    Abstract: Presented here is a system and method to increase the speed of computation of a volumetric scattering render technique. The volumetric scattering can include path tracing which simulates interactions between a virtual ray of light and a volume. The interaction can include reflection of the virtual ray of light of a particle within the volume. The system can obtain a threshold number of interactions between a virtual ray of light and a three-dimensional object through which the virtual ray of light is traveling. As the system performs the simulation, the system can compare a number of the interactions to the threshold number. Upon determining that the number of interactions is equal to or exceeds the threshold number, the system can terminate the simulation and approximate interactions between the virtual ray of light and the volume using a second rendering technique that is computationally less expensive than simulating the interactions.
    Type: Grant
    Filed: June 22, 2021
    Date of Patent: November 9, 2021
    Assignee: Weta Digital Ltd.
    Inventors: Andrea Weidlich, Marc Droske
  • Patent number: 11158113
    Abstract: Presented here is a system and method to increase the speed of computation of a volumetric scattering render technique. The volumetric scattering can include path tracing which simulates interactions between a virtual ray of light and a volume. The interaction can include reflection of the virtual ray of light of a particle within the volume. The system can obtain a threshold number of interactions between a virtual ray of light and a three-dimensional object through which the virtual ray of light is traveling. As the system performs the simulation, the system can compare a number of the interactions to the threshold number. Upon determining that the number of interactions is equal to or exceeds the threshold number, the system can terminate the simulation and approximate interactions between the virtual ray of light and the volume using a second rendering technique that is computationally less expensive than simulating the interactions.
    Type: Grant
    Filed: June 22, 2021
    Date of Patent: October 26, 2021
    Assignee: Weta Digital Ltd.
    Inventors: Andrea Weidlich, Marc Droske