Patents by Inventor Andreas Backes

Andreas Backes has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12276629
    Abstract: Sensored mixer, comprising a mixing device for mixing two or more components to produce a mixed liquid at a mixer output, and a property sensor for determining a property of a liquid, the property sensor comprising a) a channel comprising a sensing zone through which the liquid flows; b) two electrodes for generating an electric field of one or more sensing frequencies in the sensing zone; c) a data storage device comprising a pre-stored set of calibration data representing calibration impedance responses measured previously at the one or more sensing frequencies and at different property values of the property of an identical liquid; and d) a device to repeatedly i) generate between the electrodes an electric field of in the sensing zone; ii) sense between the electrodes, a response impedance; iii) derive from the response impedance a property value of the property of the liquid, using the pre-stored set of calibration data representing calibration impedance responses, wherein the property sensor is in fluid
    Type: Grant
    Filed: July 14, 2021
    Date of Patent: April 15, 2025
    Assignee: 3M Innovative Properties Company
    Inventors: Benjamin Münstermann, Knut Schumacher, Günter Zilligen, Martin Stottmeister, Robert Bialluch, Michael Bahners, Thomas Keller, Peter Orda, Jörg Hahn, Harald Westkamp, Andreas Backes, Waleri Wischnepolski, David Rudek
  • Publication number: 20250036112
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for optimizing a process of manufacturing a product. In one aspect, the method comprises repeatedly performing the following: i) selecting a configuration of input settings for manufacturing a product, based on a causal model that measures causal relationships between input settings and a measure of a quality of the product; ii) determining the measure of the quality of the product manufactured using the configuration of input settings; and iii) adjusting, based on the measure of the quality of the product manufactured using the configuration of input settings, the causal model.
    Type: Application
    Filed: October 16, 2024
    Publication date: January 30, 2025
    Inventors: Brian E. Brooks, Gilles J. Benoit, Peter O. Olson, Tyler W. Olson, Himanshu Nayar, Frederick J. Arsenault, Nicholas A. Johnson, Brett R. Hemes, Thomas J. Strey, Jonathan B. Arthur, Nathan J. Herbst, Aaron K. Nienaber, Sarah M. Mullins, Mark W. Orlando, Cory D. Sauer, Timothy J. Clemens, Scott L. Barnett, Zachary M. Schaeffer, Patrick G. Zimmerman, Gregory P. Moriarty, Jeffrey P. Adolf, Steven P. Floeder, Andreas Backes, Peter J. Schneider, Maureen A. Kavanagh, Glenn E. Casner, Miaoding Dai, Christopher M. Brown, Lori A. Sjolund, Jon A. Kirschhoffer, Carter C. Hughes
  • Patent number: 12140938
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for optimizing a process of manufacturing a product. In one aspect, the method comprises repeatedly performing the following: i) selecting a configuration of input settings for manufacturing a product, based on a causal model that measures causal relationships between input settings and a measure of a quality of the product; ii) determining the measure of the quality of the product manufactured using the configuration of input settings; and iii) adjusting, based on the measure of the quality of the product manufactured using the configuration of input settings, the causal model.
    Type: Grant
    Filed: October 3, 2019
    Date of Patent: November 12, 2024
    Assignee: 3M Innovative Properties Company
    Inventors: Brian E. Brooks, Gilles J. Benoit, Peter O. Olson, Tyler W. Olson, Himanshu Nayar, Frederick J. Arsenault, Nicholas A. Johnson, Brett R. Hemes, Thomas J. Strey, Jonathan B. Arthur, Nathan J. Herbst, Aaron K. Nienaber, Sarah M. Mullins, Mark W. Orlando, Cory D. Sauer, Timothy J. Clemens, Scott L. Barnett, Zachary M. Schaeffer, Patrick G. Zimmerman, Gregory P. Moriarty, Jeffrey P. Adolf, Steven P. Floeder, Andreas Backes, Peter J. Schneider, Maureen A. Kavanagh, Glenn E. Casner, Miaoding Dai, Christopher M. Brown, Lori A. Sjolund, Jon A. Kirschhoffer, Carter C. Hughes
  • Publication number: 20230258590
    Abstract: Sensored mixer, comprising a mixing device for mixing two or more components to produce a mixed liquid at a mixer output, and a property sensor for determining a property of a liquid, the property sensor comprising a) a channel comprising a sensing zone through which the liquid flows; b) two electrodes for generating an electric field of one or more sensing frequencies in the sensing zone; c) a data storage device comprising a pre-stored set of calibration data representing calibration impedance responses measured previously at the one or more sensing frequencies and at different property values of the property of an identical liquid; and d) a device to repeatedly i) generate between the electrodes an electric field of in the sensing zone; ii) sense between the electrodes, a response impedance; iii) derive from the response impedance a property value of the property of the liquid, using the pre-stored set of calibration data representing calibration impedance responses, wherein the property sensor is in fluid
    Type: Application
    Filed: July 14, 2021
    Publication date: August 17, 2023
    Inventors: Benjamin Münstermann, Knut Schumacher, Günter Zilligen, Martin Stottmeister, Robert Bialluch, Michael Bahners, Thomas Keller, Peter Orda, Jörg Hahn, Harald Westkamp, Andreas Backes, Waleri Wischnepolski, David Rudek
  • Patent number: 11635287
    Abstract: A magnet-based rotary angle sensor system for detecting a shaft rotation. The magnet-based rotary angle sensor system includes a rotatable excitation unit which is mounted to a shaft for rotation therewith, and a static sensor unit. The rotatable excitation unit includes at least one excitation magnet. The static sensor unit detects an excitation-magnetic field generated by the at least one excitation magnet. The static sensor unit includes a first Wiegand sensor module and a second Wiegand sensor module which are arranged in a cross-shaped manner and axially spaced from each other.
    Type: Grant
    Filed: April 26, 2021
    Date of Patent: April 25, 2023
    Assignee: FRABA B.V.
    Inventor: Andreas Backes
  • Publication number: 20220163951
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for optimizing a process of manufacturing a product. In one aspect, the method comprises repeatedly performing the following: i) selecting a configuration of input settings for manufacturing a product, based on a causal model that measures causal relationships between input settings and a measure of a quality of the product; ii) determining the measure of the quality of the product manufactured using the configuration of input settings; and iii) adjusting, based on the measure of the quality of the product manufactured using the configuration of input settings, the causal model.
    Type: Application
    Filed: October 3, 2019
    Publication date: May 26, 2022
    Inventors: Brian E. Brooks, Gilles J. Benoit, Peter O. Olson, Tyler W. Olson, Himanshu Nayar, Frederick J. Arsenault, Nicholas A. Johnson, Brett R. Hemes, Thomas J. Strey, Jonathan B. Arthur, Nathan J. Herbst, Aaron K. Nienaber, Sarah M. Mullins, Mark W. Orlando, Cory D. Sauer, Timothy J. Clemens, Scott L. Barnett, Zachary M. Schaeffer, Patrick G. Zimmerman, Gregory P. Moriarty, Jeffrey P. Adolf, Steven P. Floeder, Andreas Backes, Peter J. Schneider, Maureen A. Kavanagh, Glenn E. Casner, Miaoding Dai, Christopher M. Brown, Lori A. Sjolund, Jon A. Kirschhoffer, Carter C. Hughes
  • Publication number: 20210333087
    Abstract: A magnet-based rotary angle sensor system for detecting a shaft rotation. The magnet-based rotary angle sensor system includes a rotatable excitation unit which is mounted to a shaft for rotation therewith, and a static sensor unit. The rotatable excitation unit includes at least one excitation magnet. The static sensor unit detects an excitation-magnetic field generated by the at least one excitation magnet. The static sensor unit includes a first Wiegand sensor module and a second Wiegand sensor module which are arranged in a cross-shaped manner and axially spaced from each other.
    Type: Application
    Filed: April 26, 2021
    Publication date: October 28, 2021
    Applicant: FRABA B.V.
    Inventor: ANDREAS BACKES
  • Patent number: 10633495
    Abstract: The present disclosure relates to a pressure sensitive adhesive assembly suitable for bonding to a substrate provided with an uneven surface, wherein the pressure sensitive adhesive (PSA) assembly comprises a polymeric foam layer comprising a polymeric base material, and having a complex viscosity comprised between 2,000 Pa·s to 80,000 Pa·s, when measured at 120° C. according to the test method described in the experimental section. The present disclosure is also directed to a method of applying a pressure sensitive adhesive assembly to a substrate provided with an uneven surface, and uses thereof.
    Type: Grant
    Filed: October 31, 2019
    Date of Patent: April 28, 2020
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Jan Heimink, Kerstin Unverhau, Andreas Backes, Adrian T. Jung, Dirk Hasenberg
  • Publication number: 20200062912
    Abstract: The present disclosure relates to a pressure sensitive adhesive assembly suitable for bonding to a substrate provided with an uneven surface, wherein the pressure sensitive adhesive (PSA) assembly comprises a polymeric foam layer comprising a polymeric base material, and having a complex viscosity comprised between 2,000 Pa·s to 80,000 Pa·s, when measured at 120° C. according to the test method described in the experimental section. The present disclosure is also directed to a method of applying a pressure sensitive adhesive assembly to a substrate provided with an uneven surface, and uses thereof.
    Type: Application
    Filed: October 31, 2019
    Publication date: February 27, 2020
    Inventors: Jan Heimink, Kerstin Unverhau, Andreas Backes, Adrian T. Jung, Dirk Hasenberg
  • Patent number: 10501591
    Abstract: The present disclosure relates to a pressure sensitive adhesive assembly suitable for bonding to a substrate provided with an uneven surface, wherein the pressure sensitive adhesive (PSA) assembly comprises a polymeric foam layer comprising a polymeric base material, and having a complex viscosity comprised between 2,000 Pa·s to 80,000 Pa·s, when measured at 120C according to the test method described in the experimental section. The present disclosure is also directed to a method of applying a pressure sensitive adhesive assembly to a substrate provided with an uneven surface, and uses thereof.
    Type: Grant
    Filed: July 15, 2015
    Date of Patent: December 10, 2019
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Jan Heimink, Kerstin Unverhau, Andreas Backes, Adrian T. Jung, Dirk Hasenberg
  • Publication number: 20170210950
    Abstract: The present disclosure relates to a pressure sensitive adhesive assembly suitable for bonding to a substrate provided with an uneven surface, wherein the pressure sensitive adhesive (PSA) assembly comprises a polymeric foam layer comprising a polymeric base material, and having a complex viscosity comprised between 2,000 Pa.s to 80,000 Pa.s, when measured at 120C according to the test method described in the experimental section. The present disclosure is also directed to a method of applying a pressure sensitive adhesive assembly to a substrate provided with an uneven surface, and uses thereof.
    Type: Application
    Filed: July 15, 2015
    Publication date: July 27, 2017
    Inventors: Jan Heimink, Kerstin Unverhau, Andreas Backes, Adrian T. Jung, Dirk Hasenberg