Patents by Inventor Andreas Boegel

Andreas Boegel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140014239
    Abstract: A process for manufacturing copper-nickel-silicon alloys includes the sequential steps of casting the copper alloy; hot working the cast copper-base alloy to effect a first reduction in cross-sectional area; solutionizing the cast copper-base alloy at a temperature and for a time effective to substantially form a single phase alloy; first age annealing the alloy at a temperature and for a time effective to precipitate an amount of a second phase effective to form a multi-phase alloy having silicides; cold working the multi-phase alloy to effect a second reduction in cross-sectional area; and second age annealing the multiphase alloy at a temperature and for a time effective to precipitate additional silicides thereby raising conductivity, wherein the second age annealing temperature is less than the first age annealing temperature.
    Type: Application
    Filed: April 17, 2013
    Publication date: January 16, 2014
    Applicants: Wieland-Werke AG, GBC Metals, LLC
    Inventors: Frank N. Mandigo, Peter W. Robinson, Derek E. Tyler, Andreas Boegel, Hans-Achim Kuhn, Frank M. Keppeler, Joerg Seeger
  • Patent number: 8430979
    Abstract: A copper alloy having an improved combination of yield strength and electrical conductivity contains, by weight, from 1% to 2.5% of nickel, from 0.5% to 2.0% of cobalt, with a total nickel plus cobalt content of from 1.7% to 4.3%, from 0.5% to 1.5% of silicon with a ratio of (Ni+Co)/Si of between 3.5 and 6, and the balance copper and inevitable impurities wherein the wrought copper alloy has an electrical conductivity in excess of 40% IACS. A further increase in the combination of yield strength and electrical conductivity as well as enhanced resistance to stress relaxation is obtained by a further inclusion of up to 1% of silver.
    Type: Grant
    Filed: October 26, 2006
    Date of Patent: April 30, 2013
    Assignee: GBC Metals, LLC
    Inventors: Frank N. Mandigo, Peter W. Robinson, Derek E. Tyler, Andreas Boegel, Hans-Achim Kuhn, Frank M. Keppeler, Joerg Seeger
  • Patent number: 8257515
    Abstract: A copper alloy having an improved combination of yield strength and electrical conductivity consists essentially of, by weight, from 1% to 2.5% of nickel, from 0.5% to 2.0% of cobalt, with a total nickel plus cobalt content of from 1.7% to 4.3%, from 0.5% to 1.5% of silicon with a ratio of (Ni+Co)/Si of between 3.5 and 6, and the balance copper and inevitable impurities wherein the wrought copper alloy has an electrical conductivity in excess of 40% IACS. A further increase in the combination of yield strength and electrical conductivity as well as enhanced resistance to stress relaxation is obtained by a further inclusion of up 1% of silver. A process to manufacture the alloys of the invention as well as other copper-nickel-silicon alloys includes the sequential steps of (a). casting the copper alloy; (b). hot working the cast copper-base alloy to effect a first reduction in cross-sectional area; (c).
    Type: Grant
    Filed: October 7, 2005
    Date of Patent: September 4, 2012
    Assignees: GBC Metals, LLC, Wieland-Werke, AG
    Inventors: Frank N. Mandigo, Peter W. Robinson, Derek E. Tyler, Andreas Boegel, Hans-Achim Kuhn, Frank M. Keppeler, Joerg Seeger
  • Patent number: 7354489
    Abstract: A lead-free copper alloy based on Cu—Zn—Si and a method of manufacture thereof. The copper alloy is built on the basis of copper, zinc and silicon without toxic additives and consists of: 70 to 83% Cu, 1 to 5% Si and the further matrix-active elements: 0.01 to 2% Sn, 0.01 to 0.3% Fe and/or Co, 0.01 to 0.3% Ni, 0.01 to 0.3% Mn, the remainder Zn and unavoidable impurities.
    Type: Grant
    Filed: February 26, 2004
    Date of Patent: April 8, 2008
    Assignee: Wieland-Werke AG
    Inventors: Uwe Hofmann, Wolfgang Dannenmann, Doris Humpenoeder-Boegel, legal representative, Monika Breu, Guenter Schmid, Joerg Seeger, Andreas Boegel
  • Patent number: 7316849
    Abstract: A band-shaped semi-finished product is made out of a ductile material and is configured to be separated into at least two sections. At least one pair of wedge-shaped, non-cuttingly formed longitudinal notches are formed, between the tips of which there remains a thin web of material, which can be torn easily with little force. The semi-finished product is distinguished by burr-free separated edges, defined geometry of the separating surfaces, and extremely reduced breaking-surface portions. It shows improved resistance during static and dynamic stress, in particular for alternating bending loads, in comparison to conventional, for example via the rolling-cutting technique, separated semi-finished products.
    Type: Grant
    Filed: December 20, 2002
    Date of Patent: January 8, 2008
    Assignee: Wieland-Werke AG
    Inventors: Andreas Boegel, Isabell Buresch, Robert Kloeckler, Heinz-Ulrich Koboecken, Eberhard Lepin, Karl-Hermann Stahl, Hans-Juergen Stoeckl
  • Publication number: 20070131315
    Abstract: A copper alloy having an improved combination of yield strength and electrical conductivity consists essentially of, by weight, from 1% to 2.5% of nickel, from 0.5% to 2.0% of cobalt, with a total nickel plus cobalt content of from 1.7% to 4.3%, from 0.5% to 1.5% of silicon with a ratio of (Ni+Co)/Si of between 3.5 and 6, and the balance copper and inevitable impurities wherein the wrought copper alloy has an electrical conductivity in excess of 40% IACS. A further increase in the combination of yield strength and electrical conductivity as well as enhanced resistance to stress relaxation is obtained by a further inclusion of up 1% of silver. A process to manufacture the alloys of the invention as well as other copper-nickel-silicon alloys includes the sequential steps of (a). casting the copper alloy; (b). hot working the cast copper-base alloy to effect a first reduction in cross-sectional area; (c).
    Type: Application
    Filed: October 26, 2006
    Publication date: June 14, 2007
    Inventors: Frank Mandigo, Peter Robinson, Derek Tyler, Andreas Boegel, Hans-Achim Kuhn, Frank Keppeler, Joerg Seeger
  • Patent number: 7182823
    Abstract: A copper alloy having an improved combination of yield strength and electrical conductivity consists essentially of, by weight, from 1% to 2.5% of nickel, from 0.5% to 2.0% of cobalt, from 0.5% to 1.5% of silicon, and the balance is copper and inevitable impurities. Further, the total nickel plus cobalt content is from 1.7% to 4.3%, the ratio of nickel to cobalt is from 1.01:1 to 2.6:1, the amount of (Ni+Co)/Si is between 3.5 and 6, the electrical conductivity is in excess of 40% IACS and the yield strength is in excess of 95 ksi. An optional inclusion is up 1% of silver. A process to manufacture the alloy includes the sequential steps of (a). casting; (b). hot working; (c). solutionizing; (d). first age annealing; (e). cold working; and (f). second age annealing wherein the second age annealing temperature is less than the first age annealing temperature.
    Type: Grant
    Filed: June 30, 2003
    Date of Patent: February 27, 2007
    Assignee: Olin Corporation
    Inventors: Frank N. Mandigo, Peter W. Robinson, Derek E. Tyler, Andreas Boegel, Hans-Achim Kuhn, Frank M. Keppeler, Joerg Seeger
  • Publication number: 20060076090
    Abstract: A copper alloy having an improved combination of yield strength and electrical conductivity consists essentially of, by weight, from 1% to 2.5% of nickel, from 0.5% to 2.0% of cobalt, with a total nickel plus cobalt content of from 1.7% to 4.3%, from 0.5% to 1.5% of silicon with a ratio of (Ni+Co)/Si of between 3.5 and 6, and the balance copper and inevitable impurities wherein the wrought copper alloy has an electrical conductivity in excess of 40% IACS. A further increase in the combination of yield strength and electrical conductivity as well as enhanced resistance to stress relaxation is obtained by a further inclusion of up 1% of silver. A process to manufacture the alloys of the invention as well as other copper-nickel-silicon alloys includes the sequential steps of (a). casting the copper alloy; (b). hot working the cast copper-base alloy to effect a first reduction in cross-sectional area; (c).
    Type: Application
    Filed: October 7, 2005
    Publication date: April 13, 2006
    Inventors: Frank Mandigo, Peter Robinson, Derek Tyler, Andreas Boegel, Hans-Achim Kuhn, Frank Keppeler, Joerg Seeger
  • Patent number: 6866818
    Abstract: A method for the manufacture of tools and components for the offshore field and the mining industry, in particular, for drilling installations, using a spray formed Cu—Ni—Mn alloy of 10 to 25% Ni, 10 to 25% Mn, the remainder being copper and common impurities. Due to the favorable characteristics of the combination, the alloy is suitable as a replacement material for Be-containing copper materials.
    Type: Grant
    Filed: April 18, 2002
    Date of Patent: March 15, 2005
    Assignee: Wieland-Werke AG
    Inventors: Andreas Boegel, Klaus Ohla, Hilmar R. Mueller, Frank Michael Keppeler, Hendrik John
  • Publication number: 20040241038
    Abstract: A lead-free copper alloy on the base of Cu—Zn—Sn and a method of manufacture. The copper alloy is built on the base of copper, zinc and tin without toxic additives and consists of: 60 to 70% Cu, 0.5 to 3.5% Sn and the further matrix-active elements: 0.01 to 0.5% Fe and/or Co, 0.01 to 0.5% Ni, 0.01 to 0.5% Mn and/or Si, the remainder Zn and unavoidable impurities. Selectively up to 3% Mg, up to 0.2% P and up to 0.5% Ag, Al, As, Sb, Ti, Zr can be added. The demands for a health-conscious and ecological compatibility are thus naturally met.
    Type: Application
    Filed: February 25, 2004
    Publication date: December 2, 2004
    Inventors: Uwe Hofmann, Monika Breu, Harald Siegele, Andreas Boegel, Doris Humpenoeder-Boegel, Joerg Seeger
  • Publication number: 20040234411
    Abstract: A lead-free copper alloy on the base of Cu—Zn—Si and a method of manufacture. The copper alloy is built on the base of copper, zinc and silicon without toxic additives and consists of: 70 to 83% Cu, 1 to 5% Si and the further matrix-active elements: 0.01 to 2% Sn, 0.01 to 0.3% Fe and/or Co, 0.01 to 0.3% Ni, 0.01 to 0.3% Mn, the remainder Zn and unavoidable impurities. The demands for a health-conscious and ecological compatibility are thus naturally met.
    Type: Application
    Filed: February 26, 2004
    Publication date: November 25, 2004
    Inventors: Uwe Hofmann, Wolfgang Dannenmann, Andreas Boegel, Monika Breu, Guenter Schmid, Joerg Seeger
  • Patent number: 6811623
    Abstract: A Cu-Ni-Mn alloy which consists of 15 to 25% Ni; 15 to 25% Mn; 0.001 to 1.0% of a chip-breaking additive (lead, carbon, etc.), the remainder being copper and common impurities. The alloy can preferably be used as a replacement material for Be-containing copper materials for the manufacture of disconnectable electrical connections or for the manufacture of tools and components for the offshore field and the mining industry.
    Type: Grant
    Filed: April 18, 2002
    Date of Patent: November 2, 2004
    Assignee: Wieland-Werke AG
    Inventors: Andreas Boegel, Klaus Ohla, Hilmar R. Mueller
  • Publication number: 20040166017
    Abstract: An age-hardening copper-base alloy and processing method to make a commercially useful strip product for applications requiring high yield strength and moderately high electrical conductivity, in a strip, plate, wire, foil, tube, powder or cast form. The alloys are particularly suited for use in electrical connectors and interconnections. The alloys contain Cu—Ti—X where X is selected from Ni, Fe, Sn, P, Al, Zn, Si, Pb, Be, Mn, Mg, Ag, As, Sb, Zr, B, Cr and Co. and combinations thereof. The alloys offer excellent combinations of yield strength, and electrical conductivity, with excellent stress relaxation resistance. The yield strength is at least of 105 ksi and the electrical conductivity is at least 50% IACS.
    Type: Application
    Filed: September 5, 2003
    Publication date: August 26, 2004
    Applicants: Olin Corporation, Wieland-Werke AG
    Inventors: Ronald N. Caron, Peter W. Robinson, Derek E. Tyler, Andreas Boegel, Doris Humpenoder-Bogel, Hans-Achim Kuhn, Joerg Seeger
  • Patent number: 6749699
    Abstract: A copper alloy that consists essentially of, by weight, from 0.15% to 0.7% of chromium, from 0.005% to 0.3% of silver, from 0.01% to 0.15% of titanium, from 0.01% to 0.10% of silicon, up to 0.2% of iron, up to 0.5% of tin, and the balance copper and inevitable impurities has high strength, a yield strength in excess of 80 ksi, and high electrical conductivity, in excess of 80% IACS. The alloy further has substantially isotropic bend characteristics when the processing route includes a solution heat anneal above 850° C. and subsequent cold rolling into sheet, strip or foil interspersed by bell annealing. As a result, the alloy is particularly suited for forming into box-type electrical connectors for both automotive or multimedia applications. The alloy is also suitable for forming into a rod, wire or section.
    Type: Grant
    Filed: August 6, 2001
    Date of Patent: June 15, 2004
    Assignees: Olin Corporation, Wieland-Werke AG
    Inventors: Andreas Bögel, Jörg Seeger, Hans-Achim Kuhn, John F. Breedis, Ronald N. Caron, Derek E. Tyler
  • Publication number: 20040079456
    Abstract: A copper alloy having an improved combination of yield strength and electrical conductivity consists essentially of, by weight, from 1% to 2.5% of nickel, from 0.5% to 2.0% of cobalt, with a total nickel plus cobalt content of from 1.7% to 4.3%, from 0.5% to 1.5% of silicon with a ratio of (Ni+Co)/Si of between 3.5 and 6, and the balance copper and inevitable impurities wherein the wrought copper alloy has an electrical conductivity in excess of 40% IACS. A further increase in the combination of yield strength and electrical conductivity as well as enhanced resistance to stress relaxation is obtained by a further inclusion of up 1% of silver.
    Type: Application
    Filed: June 30, 2003
    Publication date: April 29, 2004
    Applicants: Onlin Corporation, Wieland Werke A.G.
    Inventors: Frank N. Mandigo, Peter W. Robinson, Derek E. Tyler, Andreas Boegel, Hans-Achim Kuhn, Frank M. Keppeler, Joerg Seeger
  • Publication number: 20030152738
    Abstract: A band-shaped semi-finished product is made out of a ductile material and is configured to be separated into at least two sections. At least one pair of wedge-shaped, non-cuttingly formed longitudinal notches are formed, between the tips of which there remains a thin web of material, which can be torn easily with little force. The semi-finished product is distinguished by burr-free separated edges, defined geometry of the separating surfaces, and extremely reduced breaking-surface portions. It shows improved resistance during static and dynamic stress, in particular for alternating bending loads, in comparison to conventional, for example via the rolling-cutting technique, separated semi-finished products.
    Type: Application
    Filed: December 20, 2002
    Publication date: August 14, 2003
    Inventors: Andreas Boegel, Isabell Buresch, Robert Kloeckler, Heinz-Ulrich Koboecken, Eberhard Lepin, Karl-Hermann Stahl, Hans-Juergen Stoeckl
  • Publication number: 20030007884
    Abstract: A Cu—Ni—Mn alloy which consists of 15 to 25% Ni; 15 to 25% Mn; 0.001 to 1.0% of a chip-breaking additive (lead, carbon, etc.), the remainder being copper and common impurities. The alloy can preferably be used as a replacement material for Be-containing copper materials for the manufacture of disconnectable electric connections or for the manufacture of tools and components for the offshore field and the mining industry.
    Type: Application
    Filed: April 18, 2002
    Publication date: January 9, 2003
    Inventors: Andreas Boegel, Klaus Ohla, Hilmar R. Mueller
  • Publication number: 20020166609
    Abstract: A method for the manufacture of tools and components for the offshore field and the mining industry, in particular for drilling installations using a spray formed Cu—Ni—Mn alloy consisting of 10 to 25% Ni, 10 to 25% Mn, the remainder being copper and the common impurities. Due to the favorable characteristic of the combination, it is suitable as a replacement material for Be-containing copper materials.
    Type: Application
    Filed: April 18, 2002
    Publication date: November 14, 2002
    Inventors: Andreas Boegel, Klaus Ohla, Hilmar R. Mueller, Frank Michael Keppeler, Hendrik John
  • Patent number: 6346215
    Abstract: A copper alloy contains from 4 to 20 wt. % tin and various other metals. The alloys can be used in the manufacture of structural parts which are joined together through the use of heat such as jewelry, clothing accessories and mechanically stressed structural parts in a general machine-building or automotive industry. Iron, titanium, zirconium, hafnium, manganese, zinc, phosphorus and lead can also be present in the alloy composition.
    Type: Grant
    Filed: June 15, 2000
    Date of Patent: February 12, 2002
    Assignee: Wieland-Werke AG
    Inventors: Andreas Boegel, Stephan Hansmann, Uwe Hofmann, Hilmar R. Mueller, Joachim Riedle
  • Patent number: 6136103
    Abstract: A copper-tin-titanium alloy which consists of 12 to 20% by weight tin, 0.002 to 1% by weight titanium, remainder copper and usual impurities. It is possible to add further elements. Semifinished products made from the copper alloy according to the invention are preferably produced by thin-strip casting or spray compacting. Due to a particularly advantageous combination of high mechanical strength properties with excellent ductility, combined with good resistance to corrosion, semifinished products made from the copper alloy according to the invention have numerous possible uses.
    Type: Grant
    Filed: December 16, 1998
    Date of Patent: October 24, 2000
    Assignee: Wieland-Werke AG
    Inventors: Andreas Boegel, Stephan Hansmann, Uwe Hofmann, Hilmar R. Mueller, Joachim Riedle