Patents by Inventor Andreas DE GROOTE

Andreas DE GROOTE has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11201453
    Abstract: Methods for wavelength determination of widely tunable lasers and systems thereof may be implemented with solid-state laser based photonic systems based on photonic integrated circuit technology as well as discrete table top systems such as widely-tunable external cavity lasers and systems. The methods allow integrated wavelength control enabling immediate system wavelength calibration without the need for external wavelength monitoring instruments. Wavelength determination is achieved using a monolithic solid-state based optical cavity with a well-defined transmission or reflection function acting as a wavelength etalon. The solid-state etalon may be used with a wavelength shift tracking component, e.g., a non-balanced interferometer, to calibrate the entire laser emission tuning curve within one wavelength sweep.
    Type: Grant
    Filed: July 8, 2021
    Date of Patent: December 14, 2021
    Assignee: BROLIS SENSOR TECHNOLOGY, UAB
    Inventors: Augustinas Vizbaras, Ieva Simonyte, Andreas De Groote, Kristijonas Vizbaras
  • Patent number: 11177630
    Abstract: Methods for wavelength determination of widely tunable lasers and systems thereof may be implemented with solid-state laser based photonic systems based on photonic integrated circuit technology as well as discrete table top systems such as widely-tunable external cavity lasers and systems. The methods allow integrated wavelength control enabling immediate system wavelength calibration without the need for external wavelength monitoring instruments. Wavelength determination is achieved using a monolithic solid-state based optical cavity with a well-defined transmission or reflection function acting as a wavelength etalon. The solid-state etalon may be used with a wavelength shift tracking component, e.g., a non-balanced interferometer, to calibrate the entire laser emission tuning curve within one wavelength sweep.
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: November 16, 2021
    Assignee: Brolis Sensor Technology, UAB
    Inventors: Augustinas Vizbaras, Ieva Simonyte, Andreas De Groote, Kristijonas Vizbaras
  • Publication number: 20210351567
    Abstract: Methods for wavelength determination of widely tunable lasers and systems thereof may be implemented with solid-state laser based photonic systems based on photonic integrated circuit technology as well as discrete table top systems such as widely-tunable external cavity lasers and systems. The methods allow integrated wavelength control enabling immediate system wavelength calibration without the need for external wavelength monitoring instruments. Wavelength determination is achieved using a monolithic solid-state based optical cavity with a well-defined transmission or reflection function acting as a wavelength etalon. The solid-state etalon may be used with a wavelength shift tracking component, e.g., a non-balanced interferometer, to calibrate the entire laser emission tuning curve within one wavelength sweep.
    Type: Application
    Filed: July 8, 2021
    Publication date: November 11, 2021
    Inventors: Augustinas Vizbaras, Ieva Simonyte, Andreas De Groote, Kristijonas Vizbaras
  • Publication number: 20210021099
    Abstract: Methods for wavelength determination of widely tunable lasers and systems thereof may be implemented with solid-state laser based photonic systems based on photonic integrated circuit technology as well as discrete table top systems such as widely-tunable external cavity lasers and systems. The methods allow integrated wavelength control enabling immediate system wavelength calibration without the need for external wavelength monitoring instruments. Wavelength determination is achieved using a monolithic solid-state based optical cavity with a well-defined transmission or reflection function acting as a wavelength etalon. The solid-state etalon may be used with a wavelength shift tracking component, e.g., a non-balanced interferometer, to calibrate the entire laser emission tuning curve within one wavelength sweep.
    Type: Application
    Filed: January 31, 2019
    Publication date: January 21, 2021
    Inventors: Augustinas Vizbaras, Ieva Simonyte, Andreas De Groote, Kristijonas Vizbaras
  • Patent number: 10338313
    Abstract: An on-chip broadband radiation source, and methods for its manufacture such that a photonics IC comprises an optical waveguide such as a semiconductor waveguide, a thin III-V material membrane with absorption capability for absorbing an optical pump signal induced in the waveguide. The III-V membrane comprises a LED implemented therein. The photonics IC also comprises a coupling means between the waveguide and the membrane. The device provides a broadband radiation source at a wavelength longer than the wavelength of the transferred radiation. The broadband signal can then be coupled out through the waveguide and used in the chip.
    Type: Grant
    Filed: August 22, 2016
    Date of Patent: July 2, 2019
    Assignees: UNIVERSITEIT GENT, IMEC VZW
    Inventors: Roeland Baets, Günther Roelkens, Andreas De Groote, Paolo Cardile, Ananth Subramanian
  • Publication number: 20180239089
    Abstract: An on-chip broadband radiation source, and methods for its manufacture such that a photonics IC comprises an optical waveguide such as a semiconductor waveguide, a thin III-V material membrane with absorption capability for absorbing an optical pump signal induced in the waveguide. The III-V membrane comprises a LED implemented therein. The photonics IC also comprises a coupling means between the waveguide and the membrane. The device provides a broadband radiation source at a wavelength longer than the wavelength of the transferred radiation. The broadband signal can then be coupled out through the waveguide and used in the chip.
    Type: Application
    Filed: August 22, 2016
    Publication date: August 23, 2018
    Inventors: Roeland BAETS, Günther ROELKENS, Andreas DE GROOTE, Paolo CARDILE, Ananth SUBRAMANIAN