Patents by Inventor Andreas Gortler

Andreas Gortler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6556613
    Abstract: An F2-excimer laser has multiple closely-spaced spectral lines of interest around 157 nm, and one of the lines is selected by wavelength selection optics. The wavelength selection optics of a first preferred embodiment include a birefringent Brewster window enclosing the laser gas volume of the discharge chamber. The window preferably comprises MgF2 and is located at one end of the discharge chamber. One line is selected of the two when the optical thickness of the window is selected in coordination with rotatably adjustable, orthogonal refractive indices of the window. The transmissivity of the window is dependent on the orthogonal refractive indices and the optical thickness of the window. The wavelength selection optics of a second preferred embodiment include are at least partially within the laser active volume. In this way, line selection is performed in a manner which optimizes the combination of optical and discharge efficiency, resonator size and cost.
    Type: Grant
    Filed: August 7, 2001
    Date of Patent: April 29, 2003
    Assignee: Lambda Physik AG
    Inventors: Jürgen Kleinschmidt, Peter Heist, Frank Voss, Andreas Görtler
  • Patent number: 6495795
    Abstract: A device for flushing the optical path of a UV laser beam has a casing (18) with which the optical path is separated from the external atmosphere (26). In order to maximize the life of the optical components (24, 26) in the optical path, a noble gas, in particular argon, is used for flushing the optical path.
    Type: Grant
    Filed: December 1, 2000
    Date of Patent: December 17, 2002
    Assignee: Lambda Physik AG
    Inventors: Andreas Gortler, Andreas Haupt
  • Patent number: 6477187
    Abstract: An F2-excimer laser has multiple closely-spaced spectral lines of interest around 157 nm, and one of the lines is selected by wavelength selection optics. The wavelength selection optics of a first preferred embodiment include a birefringent Brewster window enclosing the laser gas volume of the discharge chamber. The window preferably comprises MgF2 and is located at one end of the discharge chamber. One line is selected of the two when the optical thickness of the window is selected in coordination with rotatably adjustable, orthogonal refractive indices of the window. The transmissivity of the window is dependent on the orthogonal refractive indices and the optical thickness of the window. The wavelength selection optics of a second preferred embodiment include are at least partially within the laser active volume. In this way, line selection is performed in a manner which optimizes the combination of optical and discharge efficiency, resonator size and cost.
    Type: Grant
    Filed: August 7, 2001
    Date of Patent: November 5, 2002
    Assignee: Lambda Physik AG
    Inventors: Jürgen Kleinschmidt, Peter Heist, Frank Voss, Andreas Görtler
  • Patent number: 6466598
    Abstract: An F2-excimer laser has multiple closely-spaced spectral lines of interest around 157 nm, and one of the lines is selected by wavelength selection optics. The wavelength selection optics of a first preferred embodiment include a birefringent Brewster window enclosing the laser gas volume of the discharge chamber. The window preferably comprises MgF2 and is located at one end of the discharge chamber. One line is selected of the two when the optical thickness of the window is selected in coordination with rotatably adjustable, orthogonal refractive indices of the window. The transmissivity of the window is dependent on the orthogonal refractive indices and the optical thickness of the window. The wavelength selection optics of a second preferred embodiment include are at least partially within the laser active volume. In this way, line selection is performed in a manner which optimizes the combination of optical and discharge efficiency, resonator size and cost.
    Type: Grant
    Filed: August 7, 2001
    Date of Patent: October 15, 2002
    Assignee: Lambda Physik AG
    Inventors: Jürgen Kleinschmidt, Peter Heist, Frank Voss, Andreas Görtler
  • Patent number: 6459720
    Abstract: An F2-excimer laser has multiple closely-spaced spectral lines of interest around 157 nm, and one of the lines is selected by wavelength selection optics. The wavelength selection optics of a first preferred embodiment include a birefringent Brewster window enclosing the laser gas volume of the discharge chamber. The window preferably comprises MgF2 and is located at one end of the discharge chamber. One line is selected of the two when the optical thickness of the window is selected in coordination with rotatably adjustable, orthogonal refractive indices of the window. The transmissivity of the window is dependent on the orthogonal refractive indices and the optical thickness of the window. The wavelength selection optics of a second preferred embodiment include are at least partially within the laser active volume. In this way, line selection is performed in a manner which optimizes the combination of optical and discharge efficiency, resonator size and cost.
    Type: Grant
    Filed: August 7, 2001
    Date of Patent: October 1, 2002
    Assignee: Lambda Physik AG
    Inventors: Jürgen Kleinschmidt, Peter Heist, Frank Voss, Andreas Görtler
  • Patent number: 6399916
    Abstract: A device for flushing the optical path of a UV laser beam has a casing (18) with which the optical path is separated from the external atmosphere (26). In order to maximize the life of the optical components (24, 26) in the optical path, a noble gas, in particular argon, is used for flushing the optical path.
    Type: Grant
    Filed: August 10, 1998
    Date of Patent: June 4, 2002
    Assignee: Lambda Physik AG
    Inventors: Andreas Gortler, Andreas Haupt
  • Publication number: 20020041616
    Abstract: An F2-excimer laser has multiple closely-spaced spectral lines of interest around 157 nm, and one of the lines is selected by wavelength selection optics. The wavelength selection optics of a first preferred embodiment include a birefringent Brewster window enclosing the laser gas volume of the discharge chamber. The window preferably comprises MgF2 and is located at one end of the discharge chamber. One line is selected of the two when the optical thickness of the window is selected in coordination with rotatably adjustable, orthogonal refractive indices of the window. The transmissivity of the window is dependent on the orthogonal refractive indices and the optical thickness of the window. The wavelength selection optics of a second preferred embodiment include are at least partially within the laser active volume. In this way, line selection is performed in a manner which optimizes the combination of optical and discharge efficiency, resonator size and cost.
    Type: Application
    Filed: August 7, 2001
    Publication date: April 11, 2002
    Applicant: Lambda Physik AG.
    Inventors: Jurgen Kleinschmidt, Peter Heist, Frank Voss, Andreas Gortler
  • Publication number: 20020034206
    Abstract: An F2-excimer laser has multiple closely-spaced spectral lines of interest around 157 nm, and one of the lines is selected by wavelength selection optics. The wavelength selection optics of a first preferred embodiment include a birefringent Brewster window enclosing the laser gas volume of the discharge chamber. The window preferably comprises MgF2 and is located at one end of the discharge chamber. One line is selected of the two when the optical thickness of the window is selected in coordination with rotatably adjustable, orthogonal refractive indices of the window. The transmissivity of the window is dependent on the orthogonal refractive indices and the optical thickness of the window. The wavelength selection optics of a second preferred embodiment include are at least partially within the laser active volume. In this way, line selection is performed in a manner which optimizes the combination of optical and discharge efficiency, resonator size and cost.
    Type: Application
    Filed: August 7, 2001
    Publication date: March 21, 2002
    Applicant: Lambda Physik AG.
    Inventors: Jurgen Kleinschmidt, Peter Heist, Frank Voss, Andreas Gortler
  • Publication number: 20020015431
    Abstract: An F2-excimer laser has multiple closely-spaced spectral lines of interest around 157 nm, and one of the lines is selected by wavelength selection optics. The wavelength selection optics of a first preferred embodiment include a birefringent Brewster window enclosing the laser gas volume of the discharge chamber. The window preferably comprises MgF2 and is located at one end of the discharge chamber. One line is selected of the two when the optical thickness of the window is selected in coordination with rotatably adjustable, orthogonal refractive indices of the window. The transmissivity of the window is dependent on the orthogonal refractive indices and the optical thickness of the window. The wavelength selection optics of a second preferred embodiment include are at least partially within the laser active volume. In this way, line selection is performed in a manner which optimizes the combination of optical and discharge efficiency, resonator size and cost.
    Type: Application
    Filed: August 7, 2001
    Publication date: February 7, 2002
    Applicant: Lambda Physik AG
    Inventors: Jurgen Kleinschmidt, Peter Heist, Frank Voss, Andreas Gortler
  • Publication number: 20020015432
    Abstract: An F2-excimer laser has multiple closely-spaced spectral lines of interest around 157 nm, and one of the lines is selected by wavelength selection optics. The wavelength selection optics of a first preferred embodiment include a birefringent Brewster window enclosing the laser gas volume of the discharge chamber. The window preferably comprises MgF2 and is located at one end of the discharge chamber. One line is selected of the two when the optical thickness of the window is selected in coordination with rotatably adjustable, orthogonal refractive indices of the window. The transmissivity of the window is dependent on the orthogonal refractive indices and the optical thickness of the window. The wavelength selection optics of a second preferred embodiment include are at least partially within the laser active volume. In this way, line selection is performed in a manner which optimizes the combination of optical and discharge efficiency, resonator size and cost.
    Type: Application
    Filed: August 7, 2001
    Publication date: February 7, 2002
    Applicant: Lambda Physik AG
    Inventors: Jurgen Kleinschmidt, Peter Heist, Frank Voss, Andreas Gortler
  • Patent number: 6345065
    Abstract: An F2-excimer laser has multiple closely-spaced spectral lines of interest around 157 nm, and one of the lines is selected by wavelength selection optics. The wavelength selection optics of a first preferred embodiment include a birefringent Brewster window enclosing the laser gas volume of the discharge chamber. The window preferably comprises MgF2 and is located at one end of the discharge chamber. One line is selected of the two when the optical thickness of the window is selected in coordination with rotatably adjustable, orthogonal refractive indices of the window. The transmissivity of the window is dependent on the orthogonal refractive indices and the optical thickness of the window. The wavelength selection optics of a second preferred embodiment include are at least partially within the laser active volume. In this way, line selection is performed in a manner which optimizes the combination of optical and discharge efficiency, resonator size and cost.
    Type: Grant
    Filed: May 24, 1999
    Date of Patent: February 5, 2002
    Assignee: Lambda Physik AG
    Inventors: Jürgen Kleinschmidt, Peter Heist, Frank Voss, Andreas Görtler
  • Publication number: 20010000606
    Abstract: A device for flushing the optical path of a UV laser beam has a casing (18) with which the optical path is separated from the external atmosphere (26). In order to maximize the life of the optical components (24, 26) in the optical path, a noble gas, in particular argon, is used for flushing the optical path.
    Type: Application
    Filed: December 1, 2000
    Publication date: May 3, 2001
    Applicant: LAMBDA PHYSIK GESELLSCHAFT ZUR HERSTELLUNG VON LASERN MBH
    Inventors: Andreas Gortler, Andreas Haupt