Patents by Inventor Andreas Greiser

Andreas Greiser has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10422844
    Abstract: A method for setting a MRI sequence, a magnetic resonance device, and a computer program product are provided. The method includes providing, by a limitation unit, at least one limitation; providing, by a parameter provision unit, a plurality of parameters of the sequence, wherein at least one parameter of the plurality of parameters is assigned to a default parameter value; selecting, by a selection unit, a parameter of the plurality of parameters; determining, by a simulation unit, at least one sequential pattern based on at least one default parameter value of the default parameter values; determining, by an analysis unit, a permissible range of parameter values of the selected parameter based on at least one sequential pattern and the at least one limitation; and establishing, by an establishment unit, a new parameter value of the selected parameter within the permissible range of the parameter values.
    Type: Grant
    Filed: January 16, 2017
    Date of Patent: September 24, 2019
    Assignee: Siemens Healthcare GmbH
    Inventors: Thorsten Feiweier, Andreas Greiser, Uvo Hölscher, Thorsten Speckner, David Grodzki, Mathias Nittka, Daniel Nico Splitthoff
  • Patent number: 10420512
    Abstract: In a method for computing MR images of an examination object that performs a cyclic movement, MR signals are detected over at least two cycles of the cyclic movement. In each of these cycles, data for multiple MR images are recorded. Over these cycles, a magnetization of the examination object that influences the MR images approaches a state of equilibrium in a second of these cycles is closer to the state of equilibrium than in a first of these cycles. Movement information for various movement phases of the cyclic movement of the examination object is determined using the MR images from the second cycle, with movement information of the examination object determined for each of the various movement phases. Movement correction of the examination object is carried out in the MR images of the first cycle using the movement information determined in the second cycle.
    Type: Grant
    Filed: April 8, 2015
    Date of Patent: September 24, 2019
    Assignee: Siemens Aktiengesellschaft
    Inventors: Andreas Greiser, Michaela Schmidt, Peter Speier, Aurelien Stalder, Michael Zenge
  • Patent number: 10379187
    Abstract: In order to enable improved analysis of a magnetic resonance sequence, which provides a number of radio-frequency pulses for the acquisition of magnetic resonance measurement data of an object undergoing investigation by a magnetic resonance apparatus, the magnetic resonance sequence is provided to a computer and a first average radio-frequency output that is present during a first time window of the magnetic resonance sequence is determined. A second average radio-frequency output that is present during a second time window of the magnetic resonance sequence is determined. A value derived from the first average radio-frequency output and the second average radio-frequency output is provided from the computer.
    Type: Grant
    Filed: January 18, 2017
    Date of Patent: August 13, 2019
    Assignee: Siemens Healthcare GmbH
    Inventors: Andreas Greiser, Dominik Paul, Daniel Nico Splitthoff
  • Publication number: 20190237185
    Abstract: In a method and medical imaging apparatus for providing a range of potential parameters that can be used for recording a future medical image data set, an algorithm is provided to a computer for performing a quantitative analysis of the future medical image data set. The computer is also provided with patient information specifying a status of a patient. In order to reduce a probability of an invalid quantitative analysis, the range of potential parameters is set in the computer by performing the quantitative analysis depending on the patient information.
    Type: Application
    Filed: January 29, 2019
    Publication date: August 1, 2019
    Applicant: Siemens Healthcare GmbH
    Inventor: Andreas GREISER
  • Patent number: 10314512
    Abstract: In a magnetic resonance method and apparatus for determining an item of deformation information of an examination object that exhibits a cyclical movement within an examination subject, a spatial magnetization pattern is generated in an MR scanner, and MR signals are acquired from the subject during at least two cycles of the cyclical movement, with the spatial magnetization exhibiting differences in a subsequent cycle of the movement compared to an earlier cycle. Segmented subsequent MR images are acquired in a subsequent cycle and the examination object is localized therein. This localization of the examination object is then used to localize the examination object in segmented earlier MR images from the earlier cycle, and the item of deformation information is determined in a spatial direction from the segmented earlier MR images.
    Type: Grant
    Filed: December 9, 2015
    Date of Patent: June 11, 2019
    Assignee: Siemens Aktiengesellschaft
    Inventor: Andreas Greiser
  • Patent number: 10302715
    Abstract: A flexible magnetic resonance coil apparatus, an applicator, and a method for arranging a magnetic resonance coil apparatus on an object under examination are provided. The magnetic resonance coil apparatus includes at least one coil element and at least one carrier structure. The at least one carrier structure is configured to adapt its geometric shape.
    Type: Grant
    Filed: June 9, 2016
    Date of Patent: May 28, 2019
    Assignee: Siemens Healthcare GmbH
    Inventors: Peter Gall, Andreas Greiser, Martin Harder, Stephan Zink
  • Patent number: 10254372
    Abstract: A method is provided for recording, with a magnetic resonance device, magnetic resonance data of a target region of a patient moved by their breathing. An optical camera arranged in a bore of the magnetic resonance device directed onto the patient is used. Image data of the patient recorded by the camera before and/or during the recording of the magnetic resonance data is evaluated to form breathing information describing the breathing state and the breathing information is used for triggering and/or movement correction and/or assessment of a process in which a patient holds their breath.
    Type: Grant
    Filed: September 9, 2016
    Date of Patent: April 9, 2019
    Assignee: Siemens Healthcare GmbH
    Inventors: Andreas Greiser, Maria Kröll, Dominik Paul, Steffen Schröter, Jens Thöne
  • Patent number: 10159424
    Abstract: In a method and medical imaging apparatus, for generating medical image data records, raw data of the examination object are acquired by operation of a medical imaging scanner, a reconstruction algorithm issued for reconstructing a medical image data record on the basis of raw data and of a value of a physiological parameter. At least two medical image data records are created by applying the reconstruction algorithm at least twice to the acquired raw data using a different virtual value of the physiological parameter each time. The at least two medical image data records are provided from the reconstruction computer.
    Type: Grant
    Filed: May 28, 2015
    Date of Patent: December 25, 2018
    Assignee: Siemens Aktiengesellschaft
    Inventors: Andreas Greiser, Peter Speier, Aurelien Stalder
  • Patent number: 10094900
    Abstract: In a method and device for generating 4D flow images by operation of a magnetic resonance system, a volume flow data record is recorded, wherein the flow is encoded in a single direction. This is subsequently repeated with all the flow encoding directions. From the raw data associated with the individual flow encoding directions, phase images and magnitude images are calculated. Deformation fields are calculated on the basis of the magnitude images. The deformation fields are applied to the calculated phase images. Finally, a 4D flow velocity field is calculated, on the basis of a phase difference reconstruction of the corrected phase images.
    Type: Grant
    Filed: May 22, 2015
    Date of Patent: October 9, 2018
    Assignee: Siemens Aktiengesellschaft
    Inventor: Andreas Greiser
  • Patent number: 9952299
    Abstract: In a method and magnetic resonance (MR) system to determine an MR relaxation time (for example a T1, T2 or T2* relaxation time) in the heart muscle in a magnetic resonance examination, a determination an annular slice image region of the heart muscle of the left heart chamber in MR image data with the use of an automatic image segmentation. Multiple sub-regions within the slice image region are automatically determined. Each sub-region respectively includes multiple pixels of the annular slice image region of the heart muscle of the left heart chamber. An MR relaxation time is determined automatically for each of the multiple sub-regions and associated with the corresponding sub-region. A characteristic MR relaxation time in the heart muscle is determined by a statistical analysis of the multiple MR relaxation times that are associated with the multiple sub-regions.
    Type: Grant
    Filed: May 14, 2010
    Date of Patent: April 24, 2018
    Assignee: Siemens Aktiengesellschaft
    Inventor: Andreas Greiser
  • Publication number: 20180052212
    Abstract: The disclosure relates to a method for determining a sequence information element of a magnetic resonance sequence, a computer program product and an evaluation unit for performing such a method, and also a magnetic resonance device having such an evaluation unit. The method includes a determination of the sequence information element based on at least one pattern of the magnetic resonance sequence.
    Type: Application
    Filed: July 24, 2017
    Publication date: February 22, 2018
    Inventors: Andreas Greiser, David Grodzki, Daniel Nico Splitthoff
  • Publication number: 20180042497
    Abstract: In a magnetic resonance method and apparatus for determining a characteristic of an organ, a magnetic resonance sequence is executed in order to acquire temporally resolved magnetic resonance data pertaining to the organ. The magnetic resonance sequence includes at least one tagging module, which generates a sub-visual tag of the magnetic resonance data. The characteristic of the organ is determined in a processor using the sub-visual tag.
    Type: Application
    Filed: August 9, 2017
    Publication date: February 15, 2018
    Applicant: Siemens Healthcare GmbH
    Inventors: Brett Cowan, Eric Schrauben, Alistair Young, Andreas Greiser
  • Publication number: 20180011160
    Abstract: In a method and magnetic resonance (MR) apparatus for establishing imaging sequence parameter values with a reduced eddy current formation for flow-encoded magnetic resonance imaging, a number of different flow-encoded candidate raw datasets are acquired by executing a flow-encoded gradient measurement sequence with different imaging sequence parameter values from a test or calibration region of an examination object. Flow-encoded candidate image datasets are reconstructed from the different flow-encoded candidate raw datasets. A flow-encoded candidate image dataset is selected as a function of a background phase contrast established in a phase-contrast image assigned to the respective flow-encoded candidate image dataset. The imaging sequence parameter values assigned to the flow-encoded candidate image dataset are selected as parameter values for an imaging sequence for subsequent diagnostic flow-encoded magnetic resonance imaging.
    Type: Application
    Filed: June 29, 2017
    Publication date: January 11, 2018
    Applicant: Siemens Healthcare GmbH
    Inventor: Andreas Greiser
  • Publication number: 20170356975
    Abstract: In a magnetic resonance imaging apparatus and a method for the operation thereof, a diagnostic magnetic resonance imaging sequence is selected in a control computer of the apparatus, and an adjustment parameter for the selected sequence is acquired in the control computer, which is specific to the subject under examination. A limit value for a loading parameter of the subject is specified in the computer, and a parameter range for an imaging parameter of the sequence is determined in the computer on the basis of the acquired adjustment parameter and the specified limit value for the loading parameter. A planning environment for the magnetic resonance imaging of the subject is presented, in which only the determined parameter range can be set for the imaging parameter.
    Type: Application
    Filed: June 8, 2017
    Publication date: December 14, 2017
    Applicant: Siemens Healthcare GmbH
    Inventors: Andreas Greiser, Daniel Nico Splitthoff, David Grodzki
  • Publication number: 20170328975
    Abstract: In trigger-adapted MR data acquisition, a trigger from the object undergoing investigation is detected, by which a periodically repeated procedure of the object is detected. An imaging sequence is performed multiple times dependent on the trigger in order to acquire MR data. The imaging sequence includes at least one preparation pulse and a subsequent readout module, the readout module ending a first time period before an end of the procedure. The respective imaging sequence is performed only if RR?RR(0)?(dRR?dRR(B1)), wherein dRR(B1) is a second time period, RR corresponds is a first time interval between a trigger that is currently being detected and a trigger that was detected immediately before the currently detected trigger, and RR(0) is a second time interval that corresponds to a predefined time interval between two directly succeeding triggers.
    Type: Application
    Filed: May 11, 2017
    Publication date: November 16, 2017
    Applicant: Siemens Healthcare GmbH
    Inventors: Andreas Greiser, Dominik Paul, Thorsten Speckner
  • Patent number: 9791532
    Abstract: In a method and apparatus for magnetic resonance imaging, in order to create a T1 map, an pulse sequence is used that includes at least one exposure cycle, wherein the exposure cycle includes an inversion pulse, a saturation pulse quantity of one or more saturation pulses and a readout step quantity of one or more readout steps. Within the exposure cycle, at least one saturation pulse of the saturation pulse quantity follows the inversion pulse and at least one readout step of the readout step quantity follows the at least one saturation pulse.
    Type: Grant
    Filed: September 12, 2014
    Date of Patent: October 17, 2017
    Assignee: Siemens Aktiengesellschaft
    Inventor: Andreas Greiser
  • Publication number: 20170231523
    Abstract: In a method and magnetic resonance (MR) apparatus for determining a fraction of scar tissue in the myocardium of an examination person, magnetization of nuclear spins is prepared by radiation of a preparation pulse in the myocardium, and MR signals are acquired for multiple MR images while the magnetization returns to equilibrium. The multiple MR images are brought into registration with each other, so a movement of the heart between MR images is compensated. T1 times are determined using this sequence of compensated MR images. Different MR template images with different contrasts are calculated at different times after radiation of the preparation pulse, using the calculated T1 times. A myocardial contour is determined using one of the template images that has a first contrast. Scar tissue in the myocardium is determined using another template image that has a second contrast that differs from the first contrast.
    Type: Application
    Filed: February 10, 2017
    Publication date: August 17, 2017
    Applicant: Siemens Healthcare GmbH
    Inventor: Andreas Greiser
  • Patent number: 9734573
    Abstract: A computer-implemented method for determining magnetic field inversion time of a tissue species includes generating a T1-mapping image of a tissue of interest, the T1-mapping image comprising a plurality of T1 values within an expected range of T1 values for the tissue of interest. An image mask is created based on predetermined identification information about the tissue of interest. Next, an updated image mask is created based on a largest connected region in the image mask. The updated image mask is applied to the T1-mapping image to yield a masked image. Then, a mean relaxation time value is determined for the largest connected region. The mean relaxation time value is then used to determine a time point for nulling longitudinal magnetization.
    Type: Grant
    Filed: April 4, 2014
    Date of Patent: August 15, 2017
    Assignees: The United States of America, as represented by the Secretary, Dept. of Health and Human Services, Siemens Healthcare GmbH
    Inventors: Bruce S. Spottiswoode, Xiaoguang Lu, Xiaoming Bi, Hui Xue, Christopher Glielmi, Peter Kellman, Andreas Greiser
  • Publication number: 20170205483
    Abstract: A method for setting a MRI sequence, a magnetic resonance device, and a computer program product are provided. The method includes providing, by a limitation unit, at least one limitation; providing, by a parameter provision unit, a plurality of parameters of the sequence, wherein at least one parameter of the plurality of parameters is assigned to a default parameter value; selecting, by a selection unit, a parameter of the plurality of parameters; determining, by a simulation unit, at least one sequential pattern based on at least one default parameter value of the default parameter values; determining, by an analysis unit, a permissible range of parameter values of the selected parameter based on at least one sequential pattern and the at least one limitation; and establishing, by an establishment unit, a new parameter value of the selected parameter within the permissible range of the parameter values.
    Type: Application
    Filed: January 16, 2017
    Publication date: July 20, 2017
    Inventors: Thorsten Feiweier, Andreas Greiser, Uvo Hölscher, Thorsten Speckner, David Grodzki, Mathias Nittka, Daniel Nico Splitthoff
  • Publication number: 20170205485
    Abstract: In order to enable improved analysis of a magnetic resonance sequence, which provides a number of radio-frequency pulses for the acquisition of magnetic resonance measurement data of an object undergoing investigation by a magnetic resonance apparatus, the magnetic resonance sequence is provided to a computer and a first average radio-frequency output that is present during a first time window of the magnetic resonance sequence is determined. A second average radio-frequency output that is present during a second time window of the magnetic resonance sequence is determined. A value derived from the first average radio-frequency output and the second average radio-frequency output is provided from the computer.
    Type: Application
    Filed: January 18, 2017
    Publication date: July 20, 2017
    Applicant: Siemens Healthcare GmbH
    Inventors: Andreas Greiser, Dominik Paul, Daniel Nico Splitthoff