Patents by Inventor Andreas Greiser

Andreas Greiser has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100127702
    Abstract: An MR magnetic field inhomogeneity compensation system acquires multiple MR data sets representing luminance intensity values of individual image elements comprising corresponding multiple different image versions of at least a portion of a first imaging slice of patient anatomy including fat and water components. The compensation system employs the multiple MR data sets in solving corresponding multiple simultaneous nonlinear equations to calculate local frequency offset associated with magnetic field inhomogeneity at the individual image element location, for an individual image element of the image elements. The local frequency offset comprises a difference between proton spin frequency at the location and a nominal proton spin frequency. The compensation system derives data representing an electrical signal to be applied to magnetic field generation coils to substantially compensate for determined offset frequencies at the plurality of individual locations.
    Type: Application
    Filed: October 12, 2009
    Publication date: May 27, 2010
    Applicant: SIEMENS MEDICAL SOLUTIONS USA, INC.
    Inventors: Andreas Greiser, Renate Jerecic, Peter Kellman, Saurabh Shah, Peter Weale, Sven Zuehlsdorff
  • Publication number: 20100063381
    Abstract: A method for determining an item of positioning information for ECG electrodes during an examination with a magnetic resonance facility is provided. An image data record of a region surrounding the heart of a patient and the electrodes arranged on the surface of the patient is recorded. A position of the longitudinal heart axis and a position of the electrodes in the image data record are determined. A target position suited to determining evaluable ECG signals is automatically calculated for each of the electrodes by considering the position of the longitudinal heart axis and a displacement from the position of the electrodes to the target position. An item of positioning information for the electrodes is displayed by taking the displacements into consideration. A clean copy of the abstract that incorporates the above amendments is provided herewith on a separate page.
    Type: Application
    Filed: July 7, 2009
    Publication date: March 11, 2010
    Inventor: Andreas Greiser
  • Publication number: 20100045291
    Abstract: In a method and magnetic resonance apparatus to acquire and present calibration images of a periodically moving organ with the use of magnetic resonance technology, calibration images are acquired by acquiring measurement data for multiple calibration images during one continuous period of the organ movement, the multiple calibration images differing in their offset frequency and/or in their spatial position in the organ to be examined, and the calibration images in a presentation manner that, from the visual quality of the respective images, allows the user to select (identify) the image acquired with the offset frequency that should then be used to acquire the diagnostic image are displayed to a user.
    Type: Application
    Filed: August 21, 2009
    Publication date: February 25, 2010
    Inventors: Andreas Greiser, Sven Zuehlsdorff
  • Publication number: 20100019766
    Abstract: A system automatically dynamically compensates for inhomogeneity in an MR imaging device magnetic field. An MR imaging compensation system applies swept frequency magnetic field variation in determining an estimate of proton spin frequency at multiple individual locations associated with individual image elements in an anatomical volume of interest and substantially independently of tissue associated relaxation time. For the multiple individual locations, the system determines an offset frequency comprising a difference between a determined estimate of proton spin frequency associated with an individual image element location and a nominal proton spin frequency. The system derives data representing an electrical signal to be applied to magnetic field generation coils to substantially compensate for determined offset frequencies at the multiple individual locations.
    Type: Application
    Filed: June 10, 2009
    Publication date: January 28, 2010
    Applicant: Siemens Medical Solutions USA, Inc.
    Inventors: Sven Zuehlsdorff, Peter Weale, Saurabh Shah, Andreas Greiser
  • Publication number: 20070106150
    Abstract: In a method and apparatus for magnetic resonance imaging on the basis of a gradient echo sequence by excitation of nuclear spins and measurement of radio-frequency signals indicating the excited nuclear spins, a) the pulse frequency of the person to be examined is determined, b) the magnetization of the spins is prepared by means of an RF pulse block, c) a number of steps of the spin excitation as well as measurement of an RF response signal are implemented, with the measurement data along a trajectory established by projection gradients being acquired along a first slice established by a slice-selection gradient, d) items b) through c) are repeated multiple times for the first slice, with each repetition of the steps b) through c) ensuing within a time interval that is fixed in duration, and the interval is temporally displaced relative to the determined pulse frequency for at least one portion of the repetitions, and e) items b) through d) are repeated for various slices.
    Type: Application
    Filed: October 26, 2006
    Publication date: May 10, 2007
    Inventors: Andreas Greiser, Carmel Hayes, Wilfried Landschutz, Peter Speier
  • Publication number: 20060241379
    Abstract: In a method for imaging a periodically-moving subject region of a subject, an overview image data set is initially obtained that maps a movement of the subject region, at least two positions that the subject region assumes at corresponding points in time are marked in the overview image, further positions of the subject region at further points in time are interpolated from the marked positions and further points in time, and a subsequent diagnostic imaging of the moving subject region is implemented using the marked and interpolated positions.
    Type: Application
    Filed: January 3, 2006
    Publication date: October 26, 2006
    Inventors: Andreas Greiser, Wilfried Landschutz, Peter Speier