Patents by Inventor Andreas HERRIG

Andreas HERRIG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12276250
    Abstract: A wind turbine blade (10) comprising a pressure side (24) and a suction side (26), a leading edge (18) and a trailing edge (20). At least a portion of the blade (10) located in a trailing edge region (142) at or adjacent to the trailing edge (20) is a noise reducing portion defining an exposed surface and comprising a plurality of sound reducing or sound absorbing acoustic resonators (58), each of the resonators (58) comprising an opening (55) in the exposed surface and a cavity (56) having a length L between the opening (55) and a bottom (57) of the cavity opposite the opening (55).
    Type: Grant
    Filed: May 3, 2022
    Date of Patent: April 15, 2025
    Assignee: LM WINDPOWER A/S
    Inventors: Andreas Herrig, Trevor Howard Wood, Guannan Wang
  • Patent number: 12163502
    Abstract: A wind turbine blade includes a leading edge protection element attached to the leading edge of the wind turbine blade. The leading edge protection element extends in a longitudinal direction between an outboard end and an inboard end and includes an attachment surface mounted to an exterior surface of the blade, an exterior surface opposite the attachment surface, a first section extending from the leading edge and along a part of the pressure side of the wind turbine blade to a first transverse end at a first position on the pressure side of the blade, and a second section extending from the leading edge and along a part of the suction side of the wind turbine blade to a second transverse end at a second position on the suction side of the blade.
    Type: Grant
    Filed: May 11, 2021
    Date of Patent: December 10, 2024
    Assignees: BLADE DYNAMICS LIMITED, LM WIND POWER A/S, GENERAL ELECTRIC RENOVABLES ESPANA, S.L., LM WIND POWER (HOLLAND) B.V.
    Inventors: Harald Behmer, Horacio Bulacio, Marc Canal Vila, Michael Drachmann Haag, Andreas Herrig, Jordy Hertel Nilsson Van Kalken, Hans Minnee
  • Publication number: 20240384700
    Abstract: A wind turbine blade (10) comprising a pressure side (24) and a suction side (26), a leading edge (18) and a trailing edge (20). At least a portion of the blade (10) located in a trailing edge region (142) at or adjacent to the trailing edge (20) is a noise reducing portion defining an exposed surface and comprising a plurality of sound reducing or sound absorbing acoustic resonators (58), each of the resonators (58) comprising an opening (55) in the exposed surface and a cavity (56) having a length L between the opening (55) and a bottom (57) of the cavity opposite the opening (55).
    Type: Application
    Filed: May 3, 2022
    Publication date: November 21, 2024
    Inventors: Andreas HERRIG, Trevor Howard WOOD, Guannan WANG
  • Publication number: 20240360812
    Abstract: The present disclosure relates to devices for wind turbine blades and methods for reducing vibrations in wind turbines with a rotor in standstill. A device comprises a portion configured to protrude beyond a leading edge of the wind turbine blade. A device comprising a portion configured to protrude beyond the leading edge of the wind turbine may be releasably attached around a wind turbine blade substantially along a chordwise direction. The device may be detached from the blade before the wind turbine starts to operate.
    Type: Application
    Filed: July 22, 2022
    Publication date: October 31, 2024
    Inventors: Marc CANAL VILA, Andreas HERRIG, Santiago TOMAS MONPOL
  • Patent number: 12104571
    Abstract: A rotor blade assembly for mitigating stall-induced vibrations of a wind turbine during standstill includes at least one protrusion secured to the leading-edge of a rotor blade and defining an extended leading edge. The protrusion(s) wraps around a portion of the rotor blade from the suction side to the pressure side of the rotor blade. The protrusion(s) has a root-side face and a tip-side face disposed opposite thereof. The root-side face is arranged at an angle relative to a chordwise reference line. The angle is greater than zero degrees and less than or equal to 45 degrees with respect to the chordwise reference line. The protrusion(s) is configured to affect a chordwise airflow and thereby mitigate a stall-induced vibration.
    Type: Grant
    Filed: June 29, 2021
    Date of Patent: October 1, 2024
    Assignee: LM Wind Power A/S
    Inventors: Andreas Herrig, Martin Stettner, Benjamin Patrick Hallissy
  • Publication number: 20240263610
    Abstract: The present disclosure relates to devices for wind turbine blades and methods for reducing vibrations in wind turbines. More particularly, the present disclosure relates to devices for mitigating vortex induced vibrations and stall induced vibrations, wind turbine blades comprising such devices, and methods for reducing wind turbine vibrations when the wind turbine is parked, especially during wind turbine installation and/or maintenance. A method for mitigating vibrations of a parked wind turbine comprises arranging a device in an inactive state with a wind turbine blade; and causing the device to transition to an active state in which the device grips the wind turbine blade more strongly than in the inactive state.
    Type: Application
    Filed: July 22, 2022
    Publication date: August 8, 2024
    Inventors: Andreas HERRIG, Satya Mohan Vamsi ANDALAM
  • Publication number: 20240229763
    Abstract: The present invention relates to a leading edge protection for a wind turbine blade, wherein a leading edge axis of the leading edge protection is configured to be fitted on at least part of a leading edge of a wind turbine blade and the leading edge protection is configured to extend between the leading edge and a first edge downstream a first side of the wind turbine blade as well as between the leading edge and a second edge downstream a second side of the wind turbine blade, wherein the leading edge protection comprises a first part and wherein the first edge is configured to be non-parallel with the leading edge of the wind turbine blade along the first part of the leading edge protection. The present invention further relates to a wind turbine blade comprising the leading edge protection and a wind turbine comprising the wind turbine blade.
    Type: Application
    Filed: February 14, 2022
    Publication date: July 11, 2024
    Inventors: Andreas HERRIG, Horacio BULACIO, Hans MINNEE
  • Patent number: 12018638
    Abstract: A trailing edge panel is configured to be attached to a trailing edge of a wind turbine blade and includes a base element and a number of protruding aerodynamic elements. The base element has an attachment part configured to be attached to and extend from the trailing edge of the wind turbine blade and to an upstream position on a first blade side of the wind turbine blade. The base element further has a serrated part extending from the second side of the attachment part and configured to project out from the trailing edge of the wind turbine blade, wherein the serrated part comprises a number of serrations, including a first serration and a second serration. The number of protruding aerodynamic elements, including a first protruding aerodynamic element, includes a first protruding part attached to the serrated part of the base element.
    Type: Grant
    Filed: June 30, 2021
    Date of Patent: June 25, 2024
    Assignees: GE WIND ENERGY GMBH, LM WIND POWER A/S, BLADE DYNAMICS LIMITED
    Inventors: Benoit Petitjean, Guannan Wang, Andreas Herrig, Jeremy Hurault, Dongke Sun
  • Publication number: 20240133358
    Abstract: The present invention relates to a leading edge protection for a wind turbine blade, wherein a leading edge axis of the leading edge protection is configured to be fitted on at least part of a leading edge of a wind turbine blade and the leading edge protection is configured to extend between the leading edge and a first edge downstream a first side of the wind turbine blade as well as between the leading edge and a second edge downstream a second side of the wind turbine blade, wherein the leading edge protection comprises a first part and wherein the first edge is configured to be non-parallel with the leading edge of the wind turbine blade along the first part of the leading edge protection. The present invention further relates to a wind turbine blade comprising the leading edge protection and a wind turbine comprising the wind turbine blade.
    Type: Application
    Filed: February 14, 2022
    Publication date: April 25, 2024
    Inventors: Andreas HERRIG, Horacio BULACIO, Hans MINNEE
  • Publication number: 20240084778
    Abstract: A wind turbine blade extending in a longitudinal direction between a root end and a tip end and comprising a shell having an outer surface defining a pressure side and a suction side, a leading edge and a trailing edge, a chord having a chord length extending between the leading edge and the trailing edge and a load-bearing structure extending in the longitudinal direction, the wind turbine blade further comprises a dampening system comprising a blade dampening body attached exteriorly to the load-bearing structure or exteriorly to the outer surface of the shell, at least a first dampener located within the blade dampening body and positioned with a component in the chordwise direction of the blade and adapted to absorb vibrational forces the wind turbine blade is subjected to.
    Type: Application
    Filed: May 6, 2022
    Publication date: March 14, 2024
    Inventors: Andreas HERRIG, Hartmut SCHOLTE-WASSINK, Satya Mohan Vamsi DALAM
  • Patent number: 11898535
    Abstract: A wind turbine blade measurement system for optically determining a torsion of a wind turbine blade is disclosed. The wind turbine blade measurement system comprises: a wind turbine blade, which is configured to be mounted to a hub of a wind turbine, a first camera, and an auxiliary camera. The first camera is mounted in a fixed position on a support structure on an exterior surface of the root section of the wind turbine blade and arranged so as to measure along the spanwise direction of the wind turbine blade. The auxiliary camera is arranged at a position outside of the wind turbine blade, the auxiliary camera being arranged so as to being able to carry out measurements of a plurality of sets of markers arranged on the surface of the wind turbine blade and an orientation of at least one of the support structure and the first camera.
    Type: Grant
    Filed: June 18, 2021
    Date of Patent: February 13, 2024
    Assignee: LM WIND POWER A/S
    Inventor: Andreas Herrig
  • Publication number: 20240035438
    Abstract: The present disclosure relates to dampening of predominantly edgewise vibrations in a wind turbine blade. This is achieved by a wind turbine blade comprising one or more bump airfoil sections, each bump airfoil section being characterised in that for any airfoil within the bump airfoil section, the airfoil's pressure side profile yp has particular geometric properties near the trailing edge of the airfoil. Furthermore, a total length of all bump airfoil sections in the blade is at most 30% of the length of the blade, and at least half of the total length of all bump airfoil sections in the wind turbine blade is provided by one or more bump airfoil sections located spanwise in the outermost 30% of the blade.
    Type: Application
    Filed: December 22, 2021
    Publication date: February 1, 2024
    Inventors: Andreas HERRIG, Benjamin Patrick HALLISSY
  • Publication number: 20240026855
    Abstract: The present disclosure relates to methods (400, 500) for reducing vibrations in parked wind turbines (10), assemblies (82) comprising vibration mitigating devices (300) for wind turbine blades (22) and wind turbines (10). An assembly (82) comprises a vibration mitigating device (300) configured to be arranged around a wind turbine blade (22) of a wind turbine (10) and comprising one or more inflatable bodies (305) and one or more air flow modifying elements (310); and a pressure source (98) configured to inflate and/or deflate one or more of the one or more inflatable bodies (305) based on measurements of a sensor system (97) configured to monitor the wind turbine (10) and/or environmental conditions around the wind turbine (10).
    Type: Application
    Filed: July 18, 2023
    Publication date: January 25, 2024
    Inventors: Salim EL-NAAMAN, Christian Kjer ELKJÆR, Maurits BAKKUM, Casper KILDEGAARD, Andreas HERRIG
  • Patent number: 11867156
    Abstract: An apparatus for mitigating vortex-shedding vibrations or stall-induced vibrations on one or more rotor blades of a wind turbine during standstill includes at least one positioning element located between a blade tip section and a blade root section thereof. The positioning element is adapted for wrapping around at least a portion of the rotor blade. The apparatus also includes at least one airflow modifying element coupled to the positioning element and defining a height relative to a surface of the rotor blade. Additionally, the apparatus includes at least one securing element operably coupled to the positioning element for temporarily securing the airflow modifying element to the rotor blade.
    Type: Grant
    Filed: September 17, 2020
    Date of Patent: January 9, 2024
    Assignee: General Electric Company
    Inventors: Andreas Herrig, Benjamin Patrick Hallissy, Marc Canal, Jordy Hertel Nilsson van Kalken
  • Patent number: 11781522
    Abstract: A rotor blade assembly of a wind turbine includes a rotor blade having an aerodynamic body with an inboard region and an outboard region. The inboard and outboard regions define a pressure side, a suction side, a leading edge, and a trailing edge. The inboard region includes a blade root, whereas the outboard region includes a blade tip. The rotor blade also defines a chord and a span. Further, the inboard region includes a transitional region of the rotor blade that includes a maximum chord. Moreover, a unitless first derivative of the chord with respect to the span of the rotor blade in the transitional region ranges from about ?0.10 to about 0.10 from the maximum chord over about 15% of the span of the rotor blade. In addition, the unitless first derivative of the chord with respect to the span a slope of a change in the chord in is greater than about ?0.03 at an inflection point of the chord in the outboard region.
    Type: Grant
    Filed: August 17, 2021
    Date of Patent: October 10, 2023
    Assignee: General Electric Company
    Inventors: Christian Carroll, Murray Fisher, Benoit Philippe Petitjean, Andreas Herrig, Drew Adam Wetzel, Jonathon Paul Baker
  • Publication number: 20230287863
    Abstract: A rotor blade assembly for mitigating stall-induced vibrations of a wind turbine during standstill includes at least one protrusion secured to the leading-edge of a rotor blade and defining an extended leading edge. The protrusion(s) wraps around a portion of the rotor blade from the suction side to the pressure side of the rotor blade. The protrusion(s) has a root-side face and a tip-side face disposed opposite thereof. The root-side face is arranged at an angle relative to a chordwise reference line. The angle is greater than zero degrees and less than or equal to 45 degrees with respect to the chordwise reference line. The protrusion(s) is configured to affect a chordwise airflow and thereby mitigate a stall-induced vibration.
    Type: Application
    Filed: June 29, 2021
    Publication date: September 14, 2023
    Inventors: Andreas HERRIG, Martin STETTNER, Benjamin Patrick HALLISSY
  • Publication number: 20230279835
    Abstract: A trailing edge panel is configured to be attached to a trailing edge of a wind turbine blade and includes a base element and a number of protruding aerodynamic elements. The base element has an attachment part configured to be attached to and extend from the trailing edge of the wind turbine blade and to an upstream position on a first blade side of the wind turbine blade. The base element further has a serrated part extending from the second side of the attachment part and configured to project out from the trailing edge of the wind turbine blade, wherein the serrated part comprises a number of serrations, including a first serration and a second serration. The number of protruding aerodynamic elements, including a first protruding aerodynamic element, includes a first protruding part attached to the serrated part of the base element.
    Type: Application
    Filed: June 30, 2021
    Publication date: September 7, 2023
    Inventors: Benoit PETITJEAN, Guannan WANG, Andreas HERRIG, Jeremy HURAULT, Dongke SUN
  • Publication number: 20230185048
    Abstract: A method of installing a cable in an elongated structure, wherein the cable includes one or more lines is disclosed. The method includes a) enclosing the one or more lines of the cable using a sheath, b) coupling one end of the sheath to a flexible layer, c) disposing the flexible layer at a defined location at an inner surface of elongated structure, d) creating an access path extending from an outer surface of the elongated structure, opposite to the defined location, and e) extracting at least one of the flexible layer, the one or more lines, and the sheath from inside the elongate structure via the access path. Further, a system for installation of a cable in an elongated structure is also disclosed.
    Type: Application
    Filed: July 2, 2021
    Publication date: June 15, 2023
    Inventors: Marc VILA, Andreas HERRIG
  • Publication number: 20230184208
    Abstract: A wind turbine blade includes a leading edge protection element attached to the leading edge of the wind turbine blade. The leading edge protection element extends in a longitudinal direction between an outboard end and an inboard end and includes an attachment surface mounted to an exterior surface of the blade, an exterior surface opposite the attachment surface, a first section extending from the leading edge and along a part of the pressure side of the wind turbine blade to a first transverse end at a first position on the pressure side of the blade, and a second section extending from the leading edge and along a part of the suction side of the wind turbine blade to a second transverse end at a second position on the suction side of the blade.
    Type: Application
    Filed: May 11, 2021
    Publication date: June 15, 2023
    Inventors: Harald BEHMER, Horacio BULACIO, Marc Canal VILA, Michael Drachmann HAAG, Andreas HERRIG, Jordy Hertel Nilsson VAN KALKEN, Hans MINNEE
  • Publication number: 20230142485
    Abstract: A wind turbine blade measurement system for optically determining a torsion of a wind turbine blade is disclosed. The wind turbine blade measurement system comprises: a wind turbine blade, which is configured to be mounted to a hub of a wind turbine, a first camera, and an auxiliary camera. The first camera is mounted in a fixed position on a support structure on an exterior surface of the root section of the wind turbine blade and arranged so as to measure along the spanwise direction of the wind turbine blade. The auxiliary camera is arranged at a position outside of the wind turbine blade, the auxiliary camera being arranged so as to being able to carry out measurements of a plurality of sets of markers arranged on the surface of the wind turbine blade and an orientation of at least one of the support structure and the first camera.
    Type: Application
    Filed: June 18, 2021
    Publication date: May 11, 2023
    Inventor: Andreas HERRIG