Patents by Inventor Andreas Hugi

Andreas Hugi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11796392
    Abstract: A dual-comb spectrometer comprising two lasers outputting respective frequency combs having a frequency offset between their intermode beat frequencies. One laser acts as a master and the other as a follower. Although the master laser is driven nominally with a DC drive signal, the current on its drive input line nevertheless oscillates with an AC component that follows the beating of the intermode comb lines lasing in the driven master laser. This effect is exploited by tapping off this AC component and mixing it with a reference frequency to provide the required frequency offset, the mixed signal then being supplied to the follower laser as the AC component of its drive signal. The respective frequency combs in the optical domain are thus phase-locked relative to each other in one degree of freedom, so that the electrical signals obtained by multi-heterodyning the two optical signals are frequency stabilized.
    Type: Grant
    Filed: December 8, 2022
    Date of Patent: October 24, 2023
    Assignee: IRsweep AG
    Inventors: Stéphane Schilt, Pierre Brochard, Kenichi Komagata, Giulio Terrasanta, Andreas Hugi
  • Patent number: 11650101
    Abstract: A dual-comb spectrometer comprising two lasers outputting respective frequency combs having a frequency offset between their intermode beat frequencies. One laser acts as a master and the other as a follower. Although the master laser is driven nominally with a DC drive signal, the current on its drive input line nevertheless oscillates with an AC component that follows the beating of the intermode comb lines lasing in the driven master laser. This effect is exploited by tapping off this AC component and mixing it with a reference frequency to provide the required frequency offset, the mixed signal then being supplied to the follower laser as the AC component of its drive signal. The respective frequency combs in the optical domain are thus phase-locked relative to each other in one degree of freedom, so that the electrical signals obtained by multi-heterodyning the two optical signals are frequency stabilized.
    Type: Grant
    Filed: December 8, 2022
    Date of Patent: May 16, 2023
    Assignee: IRsweep AG
    Inventors: Stéphane Schilt, Pierre Brochard, Kenichi Komagata, Giulio Terrasanta, Andreas Hugi
  • Patent number: 11629997
    Abstract: A dual-comb spectrometer comprising two lasers outputting respective frequency combs having a frequency offset between their intermode beat frequencies. One laser acts as a master and the other as a follower. Although the master laser is driven nominally with a DC drive signal, the current on its drive input line nevertheless oscillates with an AC component that follows the beating of the intermode comb lines lasing in the driven master laser. This effect is exploited by tapping off this AC component and mixing it with a reference frequency to provide the required frequency offset, the mixed signal then being supplied to the follower laser as the AC component of its drive signal. The respective frequency combs in the optical domain are thus phase-locked relative to each other in one degree of freedom, so that the electrical signals obtained by multi-heterodyning the two optical signals are frequency stabilized.
    Type: Grant
    Filed: November 4, 2021
    Date of Patent: April 18, 2023
    Assignee: IRsweep AG
    Inventors: Stéphane Schilt, Pierre Brochard, Kenichi Komagata, Giulio Terrasanta, Andreas Hugi
  • Publication number: 20230109447
    Abstract: A dual-comb spectrometer comprising two lasers outputting respective frequency combs having a frequency offset between their intermode beat frequencies. One laser acts as a master and the other as a follower. Although the master laser is driven nominally with a DC drive signal, the current on its drive input line nevertheless oscillates with an AC component that follows the beating of the intermode comb lines lasing in the driven master laser. This effect is exploited by tapping off this AC component and mixing it with a reference frequency to provide the required frequency offset, the mixed signal then being supplied to the follower laser as the AC component of its drive signal. The respective frequency combs in the optical domain are thus phase-locked relative to each other in one degree of freedom, so that the electrical signals obtained by multi-heterodyning the two optical signals are frequency stabilized.
    Type: Application
    Filed: December 8, 2022
    Publication date: April 6, 2023
    Inventors: Stéphane SCHILT, Pierre BROCHARD, Kenichi KOMAGATA, Giulio TERRASANTA, Andreas HUGI
  • Publication number: 20230107251
    Abstract: A dual-comb spectrometer comprising two lasers outputting respective frequency combs having a frequency offset between their intermode beat frequencies. One laser acts as a master and the other as a follower. Although the master laser is driven nominally with a DC drive signal, the current on its drive input line nevertheless oscillates with an AC component that follows the beating of the intermode comb lines lasing in the driven master laser. This effect is exploited by tapping off this AC component and mixing it with a reference frequency to provide the required frequency offset, the mixed signal then being supplied to the follower laser as the AC component of its drive signal. The respective frequency combs in the optical domain are thus phase-locked relative to each other in one degree of freedom, so that the electrical signals obtained by multi-heterodyning the two optical signals are frequency stabilized.
    Type: Application
    Filed: December 8, 2022
    Publication date: April 6, 2023
    Inventors: Stéphane SCHILT, Pierre BROCHARD, Kenichi KOMAGATA, Giulio TERRASANTA, Andreas HUGI
  • Publication number: 20220146312
    Abstract: A dual-comb spectrometer comprising two lasers outputting respective frequency combs having a frequency offset between their intermode beat frequencies. One laser acts as a master and the other as a follower. Although the master laser is driven nominally with a DC drive signal, the current on its drive input line nevertheless oscillates with an AC component that follows the beating of the intermode comb lines lasing in the driven master laser. This effect is exploited by tapping off this AC component and mixing it with a reference frequency to provide the required frequency offset, the mixed signal then being supplied to the follower laser as the AC component of its drive signal. The respective frequency combs in the optical domain are thus phase-locked relative to each other in one degree of freedom, so that the electrical signals obtained by multi-heterodyning the two optical signals are frequency stabilized.
    Type: Application
    Filed: November 4, 2021
    Publication date: May 12, 2022
    Inventors: Stéphane SCHILT, Pierre BROCHARD, Kenichi KOMAGATA, Giulio TERRASANTA, Andreas HUGI
  • Patent number: 11293861
    Abstract: A dual-comb spectrometer 5 with two lasers 10, 12 serving as a local oscillator and an interrogator. The lasers output light beams with respective frequency combs C1, C2 of defined free spectral range, FSR. A detector 30 can detect heterodyne mixing of the combined beams to detect an RF frequency comb C3. Respective control signals are supplied to the lasers which have functional forms configured to cause the frequencies of the lasers' frequency combs C1, C2 to tune over a defined fraction of their FSR. This enables a reduction of the effective spectral sampling period by a factor equal to the ratio of the FSR to the spectral resolution of the spectrometer, which will typically be several orders of magnitude, so that the spectral sampling period can be reduced from the GHz to the MHz range, which in turn enables a gapless spectrum to be obtained in a short time.
    Type: Grant
    Filed: August 24, 2020
    Date of Patent: April 5, 2022
    Assignees: IRsweep AG, EMPA EIDGENÖSSISCHE MATERIAL PRÜFUNGS—UND FORSCHUNGSANSTALT
    Inventors: Michele Gianella, Andreas Hugi, Markus Mangold, Akshay Nataraj, Lukas Emmenegger
  • Patent number: 11287319
    Abstract: A heterodyne detection spectrometer setup comprises an optical path with at least a first cavity able to emit a first laser beam; a second cavity able to emit a second laser beam; and at least one combining and/or reflecting element. The cavities are connected to current drivers for stimulating laser emission, which shows increased signal-to-noise ratios of the heterodyne signal and an increased dynamic range. This can be reached if at least the second cavity comprises an active medium connected to a heterodyne signal extraction element and a (multi-) heterodyne signal processing unit, which is simultaneously usable for laser light generation and as detector element, comprising an active medium introduced in the optical path in order that the first and/or second laser beam can enter the respective other cavity. At least one reference path is established between the two cavities in the optical path with at least two combining and/or reflecting elements.
    Type: Grant
    Filed: June 15, 2018
    Date of Patent: March 29, 2022
    Assignee: IRsweep AG
    Inventor: Andreas Hugi
  • Publication number: 20210131868
    Abstract: A heterodyne detection spectrometer setup comprises an optical path with at least a first cavity able to emit a first laser beam; a second cavity able to emit a second laser beam; and at least one combining and/or reflecting element. The cavities are connected to current drivers for stimulating laser emission, which shows increased signal-to-noise ratios of the heterodyne signal and an increased dynamic range. This can be reached if at least the second cavity comprises an active medium connected to a heterodyne signal extraction element and a (multi-) heterodyne signal processing unit, which is simultaneously usable for laser light generation and as detector element, comprising an active medium introduced in the optical path in order that the first and/or second laser beam can enter the respective other cavity. At least one reference path is established between the two cavities in the optical path with at least two combining and/or reflecting elements.
    Type: Application
    Filed: June 15, 2018
    Publication date: May 6, 2021
    Applicant: IRsweep AG
    Inventor: Andreas HUGI
  • Publication number: 20210063306
    Abstract: A dual-comb spectrometer 5 with two lasers 10, 12 serving as a local oscillator and an interrogator. The lasers output light beams with respective frequency combs C1, C2 of defined free spectral range, FSR. A detector 30 can detect heterodyne mixing of the combined beams to detect an RF frequency comb C3. Respective control signals are supplied to the lasers which have functional forms configured to cause the frequencies of the lasers' frequency combs C1, C2 to tune over a defined fraction of their FSR. This enables a reduction of the effective spectral sampling period by a factor equal to the ratio of the FSR to the spectral resolution of the spectrometer, which will typically be several orders of magnitude, so that the spectral sampling period can be reduced from the GHz to the MHz range, which in turn enables a gapless spectrum to be obtained in a short time.
    Type: Application
    Filed: August 24, 2020
    Publication date: March 4, 2021
    Inventors: Michele Gianella, Andreas Hugi, Markus Mangold, Akshay Nataraj, Lukas Emmenegger
  • Patent number: 10027425
    Abstract: A method for optical and electrical signal processing of a multi-heterodyne signal generated by a multi-mode semi-conductor laser, for a system comprising two laser sources and an sample interaction unit. At least the beam of one of the laser passes through said sample interaction unit before being combined on a detector. The first laser is tuned (40=>42) by an amount keeping the tuning result within the available detector bandwidth (55). Then the second laser is roughly tuned by the same amount as the tuning of the first laser to bring back the signal to the vicinity (48) of the original place in the RF-domain and within the bandwidth (55) of the detector. The tuning steps are repeated with different value of mode spacing for reconstructing the sample spectrum and provide a high resolution image of the dip (41) absorption line (40).
    Type: Grant
    Filed: June 16, 2015
    Date of Patent: July 17, 2018
    Assignee: ETH Zurich
    Inventors: Andreas Hugi, Gustavo Filipe Ferreira Villares, Jérôme Faist
  • Publication number: 20170201328
    Abstract: A method for optical and electrical signal processing of a multi-heterodyne signal generated by a multi-mode semi-conductor laser, for a system comprising two laser sources and an sample interaction unit. At least the beam of one of the laser passes through said sample interaction unit before being combined on a detector. The first laser is tuned (40=>42) by an amount keeping the tuning result within the available detector bandwidth (55). Then the second laser is roughly tuned by the same amount as the tuning of the first laser to bring back the signal to the vicinity (48) of the original place in the RF-domain and within the bandwidth (55) of the detector. The tuning steps are repeated with different value of mode spacing for reconstructing the sample spectrum and provide a high resolution image of the dip (41) absorption line (40).
    Type: Application
    Filed: June 16, 2015
    Publication date: July 13, 2017
    Inventors: Andreas Hugi, Gustavo Filipe Ferreira Villares, Jérôme Faist