Patents by Inventor Andreas Künkel

Andreas Künkel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220195113
    Abstract: The present invention relates to a continuous process for purifying an aliphatic-aromatic polyester constructed from aliphatic dicarboxylic acids, aromatic dicarboxylic acids and aliphatic diols in a degassing apparatus, wherein the crude polyester is degassed for 3 to 30 minutes at a pressure of 0.01 to 5 mbar in the presence of 1% to 7% by weight, based on the total weight of the crude polyester, of an entraining agent.
    Type: Application
    Filed: May 19, 2020
    Publication date: June 23, 2022
    Inventors: Timo Benjamin WITT, Norbert EFFEN, Jerome LOHMANN, Motonori YAMAMOTO, Andreas KUENKEL
  • Publication number: 20200376822
    Abstract: The invention relates to a biodegradable three-layer polyester film of 8 to 20 ?m in thickness having a layer construction NB/C or preferably A/B/A, wherein the two outer layers (A) or (A, C) are composed of: Ai) 55% to 99.99% by weight based on the polyester mixture of the outer layers of a polyester selected from the group consisting of: polybutylene sebacate-co-terephthalate, polybutylene sebacate-co-adipate-co-terephthalate, polybutylene sebacate-co-succinate-co-terephthalate or mixtures thereof or a mixture of polybutylene sebacate-co-terephthalate and polybutylene adipate-co-terephthalate; Aii) 0.01% to 5% by weight based on the polyester mixture of the outer layers of at least one additive selected from the group consisting of: a wax, a plasticizer, a nucleating agent, antifogging agents, fillers and an antiblocking agent; and Aiii) 0% to 44.
    Type: Application
    Filed: April 5, 2018
    Publication date: December 3, 2020
    Inventors: Robert LOOS, Joerg AUFFERMANN, Norbert EFFEN, Nora SCHLUTT, Carsten SINKEL, Jerome LOHMANN, Gabriel SKUPIN, Andreas KUENKEL
  • Publication number: 20200231752
    Abstract: The present invention relates to a process for preparing an amidoamine by reacting a triacid derivative (I) with at least one amine (A), the at least one amine (A) being selected from the group consisting of diethylenetriamine and a diamine (II). The molar ratio of the triacid derivative (I) to the at least one amine (A) is in the range from 1:2 to 1:<3. The present invention further relates to the amidoamine as such and also to the use of the amidoamine of the invention as a crosslinker.
    Type: Application
    Filed: September 7, 2016
    Publication date: July 23, 2020
    Inventors: Sophie PUTZIEN, Olivier FLEISCHEL, Bend BRUCHMANN, Andreas KÜNKEL, Radoslaw KIERAT, Rolf MÜLHAUPT, Matteo GIGLI
  • Patent number: 10526461
    Abstract: The invention relates to a biodegradable polyester mixture comprising: i) 71 to 91 wt %, based on the total weight of components i and ii, of a polyester I constructed from: a-1) 40 to 70 wt %, based on the total weight of components a and b, of an aliphatic C9-C16 dicarboxylic acid or of a C9-C16 dicarboxylic acid derivative; b-1) 30 to 60 wt %, based on the total weight of components a and b, of terephthalic acid or of a terephthalic acid derivative; c-1) 98 to 100 wt %, based on the total weight of components a and b, of a C3-C6 diol; d-1) 0 to 2 wt %, based on the total weight of components a and b, of an at least trihydric alcohol; e-1) 0 to 2 wt %, based on the total weight of components a to e, of a chain extender, and ii) 9 to 29 wt %, based on the total weight of components i and ii, of a polyester II constructed from: a-2) 40 to 70 wt %, based on the total weight of components a and b, of an aliphatic C4-C6 dicarboxylic acid or of a C4-C6 dicarboxylic acid derivative; b-2) 30 to 60 wt %, based
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: January 7, 2020
    Assignee: BASF SE
    Inventors: Xin Yang, Jörg Auffermann, Carsten Sinkel, Jerome Lohmann, Robert Loos, Gabriel Skupin, Andreas Künkel, Lars Börger
  • Publication number: 20190202087
    Abstract: The invention relates to a process for production of expanded foam beads of one or more polyesters based on aliphatic or aliphatic and aromatic dicarboxylic acids and aliphatic diols, comprising the steps of: (a) melting the polyester and admixing the polyester with 1 to 3.5 wt %, based on the polyester, of a carbon dioxide and/or nitrogen blowing agent and also 0.1 to 2 wt % of a nucleating agent, and pressing the nucleated polyester melt, containing blowing agent, through a perforated disk controlled to a temperature between 150° C. and 185° C. and into a pelletizing chamber, (b) using a cutting device to comminute the polymer melt pressed through the perforated disk into individual expanding pellets, (c) discharging the pellets from the pelletizing chamber into a stream of water which is at a temperature of 5 to 90° C. and a pressure of 0.1 bar to 20 bar above ambient pressure.
    Type: Application
    Filed: August 1, 2017
    Publication date: July 4, 2019
    Inventors: Jerome LOHMANN, Peter GUTMANN, Bangaru Dharmapuri Sriramulu SAMPATH, Andreas KUENKEL, Juergen AHLERS, Uwe KEPPELER, Thomas HEITZ, Jens-Uwe SCHIERHOLZ
  • Patent number: 10253150
    Abstract: The invention relates to a process for producing expandable pelletized material which comprises polylactic acid which comprises the following steps: a) melting and incorporation by mixing of polylactic acid, one or more further polymers, a diepoxide or polyepoxide, and one or more additives, b) incorporation by mixing of an organic blowing agent into the polymer melt by means of a static or dynamic mixer at a temperature of at least 140° C., c) discharging through a die plate with holes, the diameter of which at the exit from the die is at most 1.5 mm, and d) pelletizing the melt comprising blowing agent directly downstream of the die plate, and under water, at a pressure in the range from 1 to 20 bar. The invention further relates to expandable pelletized material which comprises polylactic acid and which is obtainable by said process.
    Type: Grant
    Filed: November 11, 2015
    Date of Patent: April 9, 2019
    Assignee: BASF SE
    Inventors: Andreas Füssl, Bangaru Dharmapuri Sriramulu Sampath, Maximilian Hofmann, Ingo Bellin, Sameer Nalawade, Klaus Hahn, Andreas Künkel, Robert Loos
  • Patent number: 10106642
    Abstract: The present invention relates to biodegradable copolyesters with molecular weight Mn from 10 000 to 100 000 measured by GPC, obtainable via reaction of i) from 51 to 84% by weight, based on the copolyester, of a branched polyester middle block produced from aliphatic or aliphatic and aromatic dicarboxylic acids and from aliphatic dihydroxy compounds with molecular weight Mn from 5000 to 25 000 measured by 1H NMR with from 15.9 to 48.9% by weight, based on the copolyester, of a lactide in the presence of a catalyst, and then the resultant polyester triblock with molecular weight Mn measured by 1H NMR from 5800 to 49 500 with ii) from 0.1 to 3% by weight, based on the copolyester, of a diisocyanate. The present invention further relates to a process for the production of, and to the use of, the abovementioned biodegradable copolyesters.
    Type: Grant
    Filed: November 30, 2015
    Date of Patent: October 23, 2018
    Assignee: BASF SE
    Inventors: Kian Molawi, Robert Loos, Andreas Künkel
  • Publication number: 20160060417
    Abstract: The invention relates to a process for producing expandable pelletized material which comprises polylactic acid which comprises the following steps: a) melting and incorporation by mixing of polylactic acid, one or more further polymers, a diepoxide or polyepoxide, and one or more additives, b) incorporation by mixing of an organic blowing agent into the polymer melt by means of a static or dynamic mixer at a temperature of at least 140° C., c) discharging through a die plate with holes, the diameter of which at the exit from the die is at most 1.5 mm, and d) pelletizing the melt comprising blowing agent directly downstream of the die plate, and under water, at a pressure in the range from 1 to 20 bar. The invention further relates to expandable pelletized material which comprises polylactic acid and which is obtainable by said process.
    Type: Application
    Filed: November 11, 2015
    Publication date: March 3, 2016
    Applicant: BASF SE
    Inventors: Andreas FUSSL, Bangaru SAMPATH, Maximilian HOFMANN, lngo BELLIN, Sameer NALAWADE, Klaus HAHN, Andreas KÜNKEL, Robert LOOS
  • Patent number: 9212270
    Abstract: The invention relates to a process for producing expandable pelletized material which comprises polylactic acid which comprises the following steps: a) melting and incorporation by mixing of the following components: i) from 50 to 99.9% by weight, based on the total weight of components i to iii), of polylactic acid, ii) from 0 to 49.9% by weight, based on the total weight of components i to iii), of one or more further polymers, iii) from 0.1 to 2% by weight, based on the total weight of components i to iii), of a diepoxide or polyepoxide, and iv) from 0 to 10% by weight of one or more additives, b) incorporation by mixing of v) from 3 to 7% by weight, based on the total weight of components i to iv), of an organic blowing agent into the polymer melt by means of a static or dynamic mixer at a temperature of at least 140° C., c) discharging through a die plate with holes, the diameter of which at the exit from the die is at most 1.
    Type: Grant
    Filed: January 6, 2011
    Date of Patent: December 15, 2015
    Assignee: BASF SE
    Inventors: Andreas Füβl, Bangaru Sampath, Maximilian Hofmann, Ingo Bellin, Sameer Nalawade, Klaus Hahn, Andreas Künkel, Robert Loos
  • Publication number: 20150307671
    Abstract: The invention relates to a biodegradable polyester mixture comprising: i) 71 to 91 wt %, based on the total weight of components i and ii, of a polyester I constructed from: a-1) 40 to 70 wt %, based on the total weight of components a and b, of an aliphatic C9-C16 dicarboxylic acid or of a C9-C16 dicarboxylic acid derivative; b-1) 30 to 60 wt %, based on the total weight of components a and b, of terephthalic acid or of a terephthalic acid derivative; c-1) 98 to 100 wt %, based on the total weight of components a and b, of a C3-C6 diol; d-1) 0 to 2 wt %, based on the total weight of components a and b, of an at least trihydric alcohol; e-1) 0 to 2 wt %, based on the total weight of components a to e, of a chain extender, and ii) 9 to 29 wt %, based on the total weight of components i and ii, of a polyester II constructed from: a-2) 40 to 70 wt %, based on the total weight of components a and b, of an aliphatic C4-C6 dicarboxylic acid or of a C4-C6 dicarboxylic acid derivative; b-2) 30 to 60 wt %, based
    Type: Application
    Filed: November 8, 2013
    Publication date: October 29, 2015
    Inventors: Xin YANG, Jörg AUFFERMANN, Carsten SINKEL, Jerome LOHMANN, Robert LOOS, Gabriel SKUPIN, Andreas KÜNKEL, Lars BÖRGER
  • Patent number: 9056979
    Abstract: Disclosed is a biodegradable polyester mixture comprising 45 to 95 wt %, based on the total weight of polyester I and II, of a polyester I constructed from an aliphatic C9-C18 dicarboxylic acid or a C9-C18 dicarboxylic acid derivative; terephthalic acid or a terephthalic acid derivative; a C3-C6 diol; an at least trihydric alcohol; and a chain extender. The biodegradable polyester mixture further comprises 5 to 55 wt %, based on the total weight of polyester I and II, of a polyester II constructed from an aliphatic C4-C6 dicarboxylic acid or a C4-C6 dicarboxylic acid derivative; terephthalic acid or a terephthalic acid derivative; a C3-C6 diol; an at least trihydric alcohol; and a chain extender. The biodegradable polyester mixture further comprises 10 to 25 wt %, based on the total weight, of calcium carbonate; and 3 to 15 wt %, based on the total weight, of talc.
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: June 16, 2015
    Assignee: BASF SE
    Inventors: Xin Yang, Jörg Auffermann, Carsten Sinkel, Jerome Lohmann, Robert Loos, Gabriel Skupin, Andreas Künkel, Lars Börger
  • Publication number: 20140134363
    Abstract: Disclosed is a biodegradable polyester mixture comprising 45 to 95 wt %, based on the total weight of polyester I and II, of a polyester I constructed from an aliphatic C9-C18 dicarboxylic acid or a C9-C18 dicarboxylic acid derivative; terephthalic acid or a terephthalic acid derivative; a C3-C6 diol; an at least trihydric alcohol; and a chain extender. The biodegradable polyester mixture further comprises 5 to 55 wt %, based on the total weight of polyester I and II, of a polyester II constructed from an aliphatic C4-C6 dicarboxylic acid or a C4-C6 dicarboxylic acid derivative; terephthalic acid or a terephthalic acid derivative; a C3-C6 diol; an at least trihydric alcohol; and a chain extender. The biodegradable polyester mixture further comprises 10 to 25 wt %, based on the total weight, of calcium carbonate; and 3 to 15 wt %, based on the total weight, of talc.
    Type: Application
    Filed: November 8, 2013
    Publication date: May 15, 2014
    Applicant: BASF SE
    Inventors: Xin Yang, Jörg Auffermann, Carsten Sinkel, Jerome Lohmann, Robert Loos, Gabriel Skupin, Andreas Künkel, Lars Börger
  • Patent number: 8679826
    Abstract: A method for recycling a paper product sized, coated, or both sized and coated with a polymer, including: pulping an aqueous wastepaper suspension including a paper product in the presence of a hydrolase, the paper product being a paper product sized and/or coated with a polyester to obtain an aqueous solution, which is a waste paper suspension including a mixture of paper fibers and the polyester, and separating the polyester from the wastepaper suspension to recycle the paper fibers of the paper product, wherein the polyester is a polyester having a melt flow rate according to EN ISO 1133 (190° C., 2.16 kg weight) of from 2 to 50 cm3/10 min, and the hydrolase includes at least one of a carboxyesterase [3.1.1.1], a lipase [3.1.1.3], and a cutinase [3.1.1.74].
    Type: Grant
    Filed: October 25, 2010
    Date of Patent: March 25, 2014
    Assignee: BASF SE
    Inventors: Motonori Yamamoto, Andreas Kuenkel, Gabriel Skupin, Rainer Blum
  • Patent number: 8658069
    Abstract: The present invention relates to a process for producing shrink films comprising: A) from 20 to 90% by weight of a biodegradable, aliphatic-aromatic polyester and B) from 10 to 80% by weight of one or more polymers selected from the group consisting of: polylactic acid, polypropylene carbonate, polycaprolactone, polyhydroxyalkanoate, chitosan, gluten, and one or more aliphatic/aromatic polyesters, such as polybutylene succinate, polybutylene succinate adipate, or polybutylene succinate sebacate, or polybutylene terephthalate-co-adipate; and C) from 0 to 2% by weight of a compatibilizer, where a blow-up ratio smaller than or equal to 4:1 is selected.
    Type: Grant
    Filed: November 2, 2010
    Date of Patent: February 25, 2014
    Assignee: BASF SE
    Inventors: Jörg Auffermann, Gabriel Skupin, Andreas Künkel
  • Publication number: 20130345327
    Abstract: The invention relates to a process for producing expandable pelletized material which comprises polylactic acid which comprises the following steps: a) melting and incorporation by mixing of the following components: i) from 61.9 to 98.9% by weight, based on the total weight of components i to iv, of polylactic acid, ii) from 1 to 38% by weight, based on the total weight of components i to iv, of at least one polyhydroxyalkanoate, iii) from 0 to 30% by weight, based on the total weight of components i to iv, of at least one polyester based on aliphatic and/or aromatic dicarboxylic acids and on aliphatic dihydroxy compounds; iv) from 0.
    Type: Application
    Filed: June 25, 2013
    Publication date: December 26, 2013
    Inventors: Jerome Lohmann, Bangaru Dharmapuri Sriramulu Sampath, Peter Gutmann, Andreas Künkel, Klaus Hahn, Andreas FüßI
  • Publication number: 20130150468
    Abstract: The invention relates to a process for producing expandable pelletized material which comprises polylactic acid which comprises the following steps: a) melting and incorporation by mixing of the following components: i) from 50 to 99.9% by weight, based on the total weight of components i to iii), of polylactic acid, ii) from 0 to 49.9% by weight, based on the total weight of components i to iii), of one or more further polymers, iii) from 0.1 to 2% by weight, based on the total weight of components i to iii), of a diepoxide or polyepoxide, and iv) from 0 to 10% by weight of one or more additives, b) incorporation by mixing of v) from 3 to 7% by weight, based on the total weight of components i to iv), of an organic blowing agent into the polymer melt by means of a static or dynamic mixer at a temperature of at least 140° C., c) discharging through a die plate with holes, the diameter of which at the exit from the die is at most 1.
    Type: Application
    Filed: January 6, 2011
    Publication date: June 13, 2013
    Applicant: BASF SE
    Inventors: Andreas Füssi, Bangaru Sampath, Maximilian Hofmann, Ingo Bellin, Sameer Nalawade, Klaus Hahn, Andreas Künkel, Robert Loos
  • Publication number: 20130059141
    Abstract: The present invention relates to foam layers based on a biodegradable polyester mixture PM, comprising: i) from 5 to 49% by weight, based on the total weight of components i to ii, of at least one polypropylene carbonate; ii) from 51 to 95% by weight, based on the total weight of components i to ii, of polylactic acid; iii) from 0 to 25% by weight, based on the total weight of components i to v, of a polyester composed of an (x1) aliphatic and/or (x2) aromatic dicarboxylic acid and of an (y) aliphatic diol; iv) from 0 to 5% by weight, based on the total weight of components i to v, of a copolymer which comprises epoxy groups and which is based on styrene, acrylate, and/or methacrylate; and v) from 0 to 15% by weight, based on the total weight of components i to v, of additives.
    Type: Application
    Filed: September 4, 2012
    Publication date: March 7, 2013
    Applicant: BASF SE
    Inventors: Andreas Füßl, Jan Kurt Walter Sandler, Sameer Nalawade, Tobias Heinz Steinke, Volker Warzelhan, Andreas Künkel, Klaus Hahn, Jerome Lohmann, Anna Katharina Brym
  • Publication number: 20120276619
    Abstract: A method for recycling paper products sized and/or coated with polymers, in which the paper products sized and/or coated with polymers are initially taken in an aqueous wastepaper suspension, this wastepaper suspension a) is pulped in the presence of at least one hydrolase, b) is pulped in an alkaline medium, and/or c) is treated in an alkaline medium in a deinking process, and the polymers are then separated from the wastepaper suspension, the polymers being biodegradable polymers.
    Type: Application
    Filed: October 25, 2010
    Publication date: November 1, 2012
    Applicant: BASF SE
    Inventors: Motonori Yamamoto, Andreas Kuenkel, Gabriel Skupin, Rainer Blum
  • Publication number: 20120232191
    Abstract: The present invention relates to a process for producing shrink films comprising: A) from 20 to 90% by weight of a biodegradable, aliphatic-aromatic polyester and B) from 10 to 80% by weight of one or more polymers selected from the group consisting of: polylactic acid, polypropylene carbonate, polycaprolactone, polyhydroxyalkanoate, chitosan, gluten, and one or more aliphatic/aromatic polyesters, such as polybutylene succinate, polybutylene succinate adipate, or polybutylene succinate sebacate, or polybutylene terephthalate-co-adipate; and C) from 0 to 2% by weight of a compatibilizer, where a blow-up ratio smaller than or equal to 4:1 is selected.
    Type: Application
    Filed: November 2, 2010
    Publication date: September 13, 2012
    Applicant: BASF SE
    Inventors: Jörg Auffermann, Gabriel Skupin, Andreas Künkel
  • Patent number: 8017790
    Abstract: The present invention relates to a process for preparing a compound II or a composition comprising the compound II to a composition comprising succinimide and to a composition prepared by the process according to the invention.
    Type: Grant
    Filed: December 17, 2005
    Date of Patent: September 13, 2011
    Assignee: BASF SE
    Inventors: Wolfgang Fischer, Daniela Klein, Andreas Künkel, Rolf Pinkos, Edzard Scholten