Patents by Inventor Andreas Kloeppel

Andreas Kloeppel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9211563
    Abstract: A substrate processing system for processing an essentially vertically oriented substrate is described. The system includes a first processing chamber having a first processing region to deposit a first layer comprising a first material, a second processing chamber having a second processing region to deposit a second layer over the first layer, the second layer comprising a second material, a third processing chamber having a third processing region to deposit a layer comprising the second material, a transfer chamber providing essentially linear transport paths with the first, second, and third chambers, respectively, and a chamber comprising a first and a second transportation track, wherein at least one of the first and second transportation tracks forms an essentially linear transportation path with the first processing chamber, wherein the first chamber is adapted to receive the substrate from the transfer chamber, and to deposit a further layer comprising the first material.
    Type: Grant
    Filed: February 21, 2012
    Date of Patent: December 15, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Erkan Koparal, Andreas Kloeppel
  • Patent number: 9175383
    Abstract: The invention refers to a coating device for the deposition of thin films on large area substrates comprising a process chamber, an electrode arrangement within the process chamber (2) which is adapted for generating a plasma adjacent to the electrode arrangement (4) at at least two opposing sides of the electrode arrangement, and at least two substrate holders for supporting at least two substrates (5,6) in substrate positions on opposing sides of the electrode arrangement, the electrode arrangement being located between the substrate positions and the substrates facing in the substrate positions the at least two plasma generated at the electrode arrangement, wherein the electrode arrangement comprises at least two cathodes arranged in a plane, the cathodes being able to generate a plasma at at least two sides of each cathode.
    Type: Grant
    Filed: January 16, 2008
    Date of Patent: November 3, 2015
    Assignee: APPLIED MATERIALS, INC.
    Inventor: Andreas Kloeppel
  • Publication number: 20150214018
    Abstract: A method for coating a substrate by means of a cathode arrangement including at least two rotatable cathodes is disclosed. The method includes rotating at least one of the at least two rotatable cathodes in a first direction, and, at the same time, rotating at least one of the at least two rotatable cathodes in a second direction. The first direction is opposite to the second direction. Furthermore, a controller for controlling a coating process is disclosed. Furthermore, a coater for coating a substrate is disclosed. The coater includes a cathode arrangement with at least two rotatable cathodes and a controller as disclosed herein.
    Type: Application
    Filed: May 29, 2012
    Publication date: July 30, 2015
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Evelyn Scheer, Markus Hanika, Konrad Schwanitz, Fabio Pieralisi, Andreas Klöppel, Jian Liu, Andreas Lopp
  • Publication number: 20140044880
    Abstract: A substrate processing system for processing an essentially vertically oriented substrate is described. The system includes a first processing chamber having a first processing region to deposit a first layer comprising a first material, a second processing chamber having a second processing region to deposit a second layer over the first layer, the second layer comprising a second material, a third processing chamber having a third processing region to deposit a layer comprising the second material, a transfer chamber providing essentially linear transport paths with the first, second, and third chambers, respectively, and a chamber comprising a first and a second transportation track, wherein at least one of the first and second transportation tracks forms an essentially linear transportation path with the first processing chamber, wherein the first chamber is adapted to receive the substrate from the transfer chamber, and to deposit a further layer comprising the first material.
    Type: Application
    Filed: February 21, 2012
    Publication date: February 13, 2014
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Erkan Koparal, Andreas Kloeppel
  • Publication number: 20120107504
    Abstract: A deposition system is provided which is adapted for depositing a thin film onto a substrate. The deposition system includes a substrate carrier adapted for carrying the substrate and at least one tilted evaporator crucible. The at least one tilted evaporator crucible is adapted for directing evaporated deposition material towards the substrate in a main emission direction. The main direction emission of the tilted evaporator crucible is different from a direction normal to the substrate.
    Type: Application
    Filed: October 29, 2010
    Publication date: May 3, 2012
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Philipp MAURER, Sven SCHRAMM, Andreas LOPP, Andreas KLÖPPEL
  • Publication number: 20090178916
    Abstract: The invention refers to a coating device for the deposition of thin films on large area substrates comprising a process chamber, an electrode arrangement within the process chamber (2) which is adapted for generating a plasma adjacent to the electrode arrangement (4) at at least two opposing sides of the electrode arrangement, and at least two substrate holders for supporting at least two substrates (5,6) in substrate positions on opposing sides of the electrode arrangement, the electrode arrangement being located between the substrate positions and the substrates facing in the substrate positions the at least two plasma generated at the electrode arrangement, wherein the electrode arrangement comprises at least two cathodes arranged in a plane, the cathodes being able to generate a plasma at at least two sides of each cathode.
    Type: Application
    Filed: January 16, 2008
    Publication date: July 16, 2009
    Applicant: Applied Materials, Inc.
    Inventor: Andreas Kloeppel
  • Publication number: 20090114528
    Abstract: A magnet/target assembly 1 comprises a target 2 consisting of a plurality of (virtual) segments 2.1, 2.2, 2.3, 2.4, 2.5, 2.6 arranged side by side, each of them extending along the longitudinal axis x of the target 2. Each of the plurality of target segments 2.1, 2.2, 2.3, 2.4, 2.5, 2.6 has a magnet system 3.1, 3.2, 3.3, 3.4, 3.5, 3.6 attributed to the respective target segment. In an embodiment of the target/magnet assembly 1 according to the present invention the magnet systems 3.1, 3.2, 3.3, 3.4, 3.5, 3.6 are arranged mutually offset relative to their respective adjacent magnet systems 3.1, 3.2, 3.3, 3.4, 3.5 and 3.6, respectively, while scanning the target segments 2.1, 2.2, 2.3, 2.4, 2.5 and 2.6, respectively. Particularly, the first magnet system 3.1, the third magnet system 3.3 and the fifth magnet system 3.5 are a first group of magnet systems moving parallel and synchronously with each other, and the second magnet system 3.2, the forth magnet systems 3.4 and the sixth magnet system 3.
    Type: Application
    Filed: November 7, 2007
    Publication date: May 7, 2009
    Applicant: Applied Materials, Inc.
    Inventors: Ralph Lindenberg, Marcus Bender, Tobias Stolley, Andreas Kloeppel, Andreas Lopp, Christoph Moelle
  • Patent number: 7285342
    Abstract: A process for the deposition of transparent and conductive indium-tin oxide (ITO) films with a particularly low resistance of preferably less than 200 ??cm and a small surface roughness of preferably less than 1 nm on a substrate, wherein combined BF/DC sputtering of an indium-tin oxide (ITO) target is employed and wherein the process gas is supplemented by an argon/hydrogen mixture as reaction gas during the sputtering, as well as ITO-films with the above-named characteristics.
    Type: Grant
    Filed: November 11, 2004
    Date of Patent: October 23, 2007
    Assignee: Unaxis Deutschland GmbH
    Inventors: Andreas Klöppel, Jutta Trube
  • Patent number: 6905776
    Abstract: On a glass substrate, a base layer of indium cerium oxide is deposited, and on this a thin copper-containing silver layer, both produced by means of DC sputtering. On top there is another indium cerium oxide layer, which is produced by means of AC-superimposed DC sputter deposition. This layer system boasts very low surface resistivity combined with high transparency in the visible part of the spectrum, which means it has a high Haacke quality factor.
    Type: Grant
    Filed: October 11, 2000
    Date of Patent: June 14, 2005
    Assignee: BPS Alzenau GmbH
    Inventors: Johannes Stollenwerk, Andreas Klöppel, Marcus Bender
  • Patent number: 6849165
    Abstract: A process for the deposition of transparent and conductive indium-tin oxide (ITO) films with a particularly low resistance of preferably less than 200 ??cm and a small surface roughness of preferably less than 1 nm on a substrate, wherein combined HF/DC sputtering of an indium-tin oxide (ITO) target is employed and wherein the process gas is supplemented by an argon/hydrogen mixture as reaction gas during the sputtering, as well as ITO-films with the above-named characteristics.
    Type: Grant
    Filed: May 4, 2001
    Date of Patent: February 1, 2005
    Assignee: Unaxis Deutschland GmbH
    Inventors: Andreas Klöppel, Jutta Trube
  • Patent number: 6740207
    Abstract: Sparking is suppressed during high-frequency sputtering by a high-frequency generator (5) which has a controlled switching unit (13) that is connected upstream in relation to the output of the generator. A high-frequency supply signal that is generated at the output of the high-frequency generator is stopped for plasma discharge (PL) for a short time, by the switching unit.
    Type: Grant
    Filed: March 28, 2002
    Date of Patent: May 25, 2004
    Assignee: Unaxis Deutschland GmbH
    Inventors: Andreas Kloeppel, Christoph Daube, Johannes Stollenwerk, Thomas Linz
  • Publication number: 20020104753
    Abstract: The aim of the invention is to suppress sparking during high-frequency sputtering. A high-frequency generator (5) is provided which has a controlled switching unit (13) that is connected upstream in relation to the output of said generator. A high-frequency supply signal that is generated at the output of the high-frequency generator is stopped for plasma discharge (PL) for a short time and by means of said switching unit.
    Type: Application
    Filed: March 28, 2002
    Publication date: August 8, 2002
    Inventors: Andreas Kloeppel, Christoph Daube, Johannes Stollenwerk, Thomas Linz