Patents by Inventor Andreas Krug

Andreas Krug has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230003816
    Abstract: A magnetic resonance imaging device having a field generation unit configured to provide a magnetic field in an imaging volume of the magnetic resonance imaging device. The field generation unit has at least one magnet. A surface of the field generation unit directed towards the imaging volume of the at least one magnet has a concave shape, wherein a direction of access to the imaging volume is oriented essentially perpendicular to a main direction of magnetic field lines in the imaging volume.
    Type: Application
    Filed: June 29, 2022
    Publication date: January 5, 2023
    Inventors: Michael Mallett, Adrian Mark Thomas, Stefan Popescu, Andreas Krug, Matthias Gebhardt, Stephan Biber, Andreas Greiser
  • Publication number: 20220308139
    Abstract: A magnetic resonance imaging device may include a field generator configured to provide a magnetic field in an imaging volume of the magnetic resonance imaging device. The field generator may include at least one magnet that confines the imaging volume in at least one spatial direction. The at least one magnet may be curved in such a way that a perpendicular distance between a line oriented along a direction of access to the imaging volume and a surface directed towards the imaging volume of the at least one magnet varies in the direction of access to the imaging volume.
    Type: Application
    Filed: March 28, 2022
    Publication date: September 29, 2022
    Inventors: Andreas Krug, Michael Mallett
  • Publication number: 20220308138
    Abstract: A gradient coil unit including a first conductor structure arranged within a first form and a second conductor structure arranged within a second form, wherein the first conductor structure and the second conductor structure are designed together to generate a magnetic field gradient in a first direction, the first form and the second form are arranged separately, opposite each other, and divided by a hollow space, and the first form has a segment of a circle as a cross section.
    Type: Application
    Filed: March 25, 2022
    Publication date: September 29, 2022
    Inventors: Stephan Biber, Andreas Krug
  • Publication number: 20220308142
    Abstract: A magnetic resonance imaging device may include a field generator for generating at least one magnetic gradient field. The field generator may include a first magnet and a second magnet confining an imaging volume of the magnetic resonance imaging device in two spatial directions. The first magnet and the second magnet may be arranged asymmetrically with respect to the imaging volume. The magnetic resonance imaging device may be used to perform a method for acquiring an image of a diagnostically relevant body region of a patient.
    Type: Application
    Filed: March 28, 2022
    Publication date: September 29, 2022
    Inventors: Michael Mallett, Adrian Mark Thomas, Matthias Gebhardt, Stephan Biber, Andreas Krug, Stefan Popescu, Lars Lauer, Andreas Greiser
  • Publication number: 20220283250
    Abstract: A device for use in magnetic resonance imaging (MRI) systems may include a superconducting main magnet coil; and a thermal radiation shield that encloses the superconducting main magnet coil. The shield may include an inner cylindrical bore tube, an outer cylindrical wall, and annular end walls welded between the annular cylindrical bore tube and the outer cylindrical wall to form a closed, hollow cylindrical vessel. A distribution of a position and length of welds that affix the annular end walls to the inner cylindrical bore tube may include a predetermined arrangement of welds of varying lengths interspersed with gaps of varying lengths.
    Type: Application
    Filed: July 16, 2020
    Publication date: September 8, 2022
    Applicant: Siemens Healthcare Limited
    Inventors: Peter Dietz, Andreas Krug, Michael Mallett, Marco Bevilacqua
  • Publication number: 20220221541
    Abstract: A method for determining peripheral nerve stimulation during MR imaging of a patient in a MR scan unit for a MR pulse sequence is described. In the method, a plurality of model-based candidate stimulations are determined dependent on a unit vector potential of the gradient magnet field generated during MR imaging and dependent on candidate data models for different object parameter values. A model-based candidate data stimulation is selected as a stimulation model for the patient dependent on an individual patient model. A distribution of a vector potential of a gradient magnetic field acting on the patient is determined as a function of a unit gradient current for a determined position of the patient in the MR scanning unit. The nerve stimulation of the patient is determined for the determined position based on the selected candidate stimulation and a gradient current of a gradient pulse of the MR pulse sequence.
    Type: Application
    Filed: December 20, 2021
    Publication date: July 14, 2022
    Inventors: Axel vom Endt, Peter Dietz, Andreas Krug, Mathias Davids, Lawrence Wald
  • Patent number: 11047939
    Abstract: A magnetic resonance device comprising a gradient coil assembly having gradient coils is described. The gradient coils are supported by at least one cylindrical coil carrier for generating gradient fields. As part of the gradient coil assembly, at least one vibration sensor is provided for measuring vibrations of the gradient coil assembly at least in a radial direction of oscillation.
    Type: Grant
    Filed: August 1, 2019
    Date of Patent: June 29, 2021
    Assignee: Siemens Healthcare GmbH
    Inventors: Peter Dietz, Annette Stein, Andreas Krug, Stefan Popescu
  • Patent number: 10955501
    Abstract: A magnetic resonance system includes a magnet device, which is arranged in an outer housing and an inner housing located therein. A monitoring method includes determining a value of a vibration amplitude of the outer housing or an intermediate housing located between the inner housing and the outer housing at a vibration frequency; providing a transmission ratio between the vibration amplitude and the operating parameter at the vibration frequency; and determining a value of the operating parameter as a function of the determined value of the vibration amplitude by means of the transmission ratio.
    Type: Grant
    Filed: November 6, 2019
    Date of Patent: March 23, 2021
    Assignee: Siemens Healthcare GmbH
    Inventors: Peter Dietz, Andreas Krug, Christopher Stroehlein, Karsten Wicklow
  • Patent number: 10890637
    Abstract: A gradient coil for magnetic resonance imaging has at least two conductors that are independent of one another, designed to jointly generate a magnetic field gradient and a magnetic field of a higher order in the examination region of a magnetic resonance scanner.
    Type: Grant
    Filed: July 27, 2018
    Date of Patent: January 12, 2021
    Assignee: Siemens Healthcare GmbH
    Inventors: Sascha Fath, Andreas Krug
  • Publication number: 20200142015
    Abstract: A magnetic resonance system includes a magnet device, which is arranged in an outer housing and an inner housing located therein. A monitoring method includes determining a value of a vibration amplitude of the outer housing or an intermediate housing located between the inner housing and the outer housing at a vibration frequency; providing a transmission ratio between the vibration amplitude and the operating parameter at the vibration frequency; and determining a value of the operating parameter as a function of the determined value of the vibration amplitude by means of the transmission ratio.
    Type: Application
    Filed: November 6, 2019
    Publication date: May 7, 2020
    Applicant: Siemens Healthcare GmbH
    Inventors: Peter Dietz, Andreas Krug, Christopher Stroehlein, Karsten Wicklow
  • Publication number: 20200041589
    Abstract: A magnetic resonance device comprising a gradient coil assembly having gradient coils is described. The gradient coils are supported by at least one cylindrical coil carrier for generating gradient fields. As part of the gradient coil assembly, at least one vibration sensor is provided for measuring vibrations of the gradient coil assembly at least in a radial direction of oscillation.
    Type: Application
    Filed: August 1, 2019
    Publication date: February 6, 2020
    Applicant: Siemens Healthcare GmbH
    Inventors: Peter Dietz, Annette Stein, Andreas Krug, Stefan Popescu
  • Patent number: 10401451
    Abstract: In a method for actuating a shim coil arrangement of a magnetic resonance data acquisition scanner that has a shim controller that operates said shim coil arrangement, and a gradient coil arrangement operated by a gradient controller, the gradient controller determine a gradient pulse shape, in accordance with specifications of a magnetic resonance data acquisition sequence, that is activated by the gradient coil arrangement, when the sequence is executed in said scanner. A modifies the gradient pulse shape and provides the modified gradient pulse shape to the shim controller and the shim controller generates shim settings dependent on the modified gradient pulse shape, and actuates said shim coil arrangement according to the shim settings during activation of the gradient pulse shape by the gradient coil arrangement during execution of the sequence in said scanner.
    Type: Grant
    Filed: November 9, 2016
    Date of Patent: September 3, 2019
    Assignee: Siemens Healthcare GmbH
    Inventors: Andrew Dewdney, Eva Eberlein, Andreas Krug
  • Patent number: 10330756
    Abstract: In a method and an apparatus for magnetic resonance tomography, an eddy current field is compensated by taking into account its progression over time and its dependence on a sensed value, by having a sensor determine the sensed value and, on the basis of the sensed value, a current strength for a conductor in order to generate an opposing field to reduce the eddy current field is determined, and supplied to the conductor.
    Type: Grant
    Filed: December 2, 2016
    Date of Patent: June 25, 2019
    Assignee: Siemens Healthcare GmbH
    Inventors: Stephan Biber, Matthias Gebhardt, Andreas Krug
  • Publication number: 20190033405
    Abstract: A gradient coil for magnetic resonance imaging has at least two conductors that are independent of one another, designed to jointly generate a magnetic field gradient and a magnetic field of a higher order in the examination region of a magnetic resonance scanner.
    Type: Application
    Filed: July 27, 2018
    Publication date: January 31, 2019
    Applicant: Siemens Healthcare GmbH
    Inventors: Sascha Fath, Andreas Krug
  • Publication number: 20170160357
    Abstract: In a method and an apparatus for magnetic resonance tomography, an eddy current field is compensated by taking into account its progression over time and its dependence on a sensed value, by having a sensor determine the sensed value and, on the basis of the sensed value, a current strength for a conductor in order to generate an opposing field to reduce the eddy current field is determined, and supplied to the conductor.
    Type: Application
    Filed: December 2, 2016
    Publication date: June 8, 2017
    Applicant: Siemens Healthcare GmbH
    Inventors: Stephan Biber, Matthias Gebhardt, Andreas Krug
  • Publication number: 20170131372
    Abstract: In a method for actuating a shim coil arrangement of a magnetic resonance data acquisition scanner that has a shim controller that operates said shim coil arrangement, and a gradient coil arrangement operated by a gradient controller, the gradient controller determine a gradient pulse shape, in accordance with specifications of a magnetic resonance data acquisition sequence, that is activated by the gradient coil arrangement, when the sequence is executed in said scanner. A modifies the gradient pulse shape and provides the modified gradient pulse shape to the shim controller and the shim controller generates shim settings dependent on the modified gradient pulse shape, and actuates said shim coil arrangement according to the shim settings during activation of the gradient pulse shape by the gradient coil arrangement during execution of the sequence in said scanner.
    Type: Application
    Filed: November 9, 2016
    Publication date: May 11, 2017
    Applicant: Siemens Healthcare GmbH
    Inventors: Andrew Dewdney, Eva Eberlein, Andreas Krug
  • Patent number: 9638775
    Abstract: A connecting device for a magnetic system of an imaging system includes a holding element for connection of the connecting device to a power supply connection of the magnetic system, and a connecting element for connection of the connecting device to a power supply cable for operation of the magnetic system. The connecting device also includes an oscillation damping device having a spring element. The oscillation damping device is operable to dampen oscillations of the magnetic system that act on the connecting device by way of the holding element, with respect to the connecting element.
    Type: Grant
    Filed: October 4, 2012
    Date of Patent: May 2, 2017
    Assignee: Siemens Aktiengesellschaft
    Inventors: Peter Dietz, Andreas Krug, Joerg Riegler
  • Patent number: 9229078
    Abstract: The present embodiments relate to a method for reducing mechanical vibrations in a magnetic resonance imaging system that includes a gradient system having a gradient coil body and an electrically conductive shroud that at least partly encloses the gradient coil body. The method includes determining a mechanical natural vibration mode of the gradient coil body in the magnetic resonance imaging system, and determining excitation force components for the natural vibration mode. The method also includes determining electrically conductive areas of the gradient system, which during operation of the magnetic resonance imaging system, generate a Lorentz force component that contributes to the excitation force components. The method further includes modifying the determined electrically conductive areas such that a minimal number of the Lorentz force components coincide with the excitation force components.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: January 5, 2016
    Assignee: Siemens Aktiengesellschaft
    Inventors: Peter Dietz, Andreas Krug
  • Patent number: 8963548
    Abstract: A cylindrical gradient coil arrangement is provided for a magnetic resonance device. The arrangement includes at least one conductive structure that forms at least one gradient coil and a cooling device that uses a cooling fluid to cool the at least one conductive structure. The arrangement includes an outer carrier structure and an inner carrier structure. The outer carrier structure includes two tubular, coaxial outer sections with different diameters. The inner, tubular carrier structure is arranged between and coaxially with the outer sections. The conductive structure is placed on the inner carrier structure. The inner carrier structure is spaced from the outer sections by a clearance. The clearance forms a cooling channel through which the cooling fluid of the cooling device may flow. The inner carrier structure is fastened to the outer carrier structure at least in a point-by-point manner.
    Type: Grant
    Filed: March 2, 2013
    Date of Patent: February 24, 2015
    Assignee: Siemens Aktiengesellschaft
    Inventors: Ralph Kimmlingen, Andreas Krug
  • Patent number: 8952696
    Abstract: A supply line apparatus for an electrical connection of a gradient coil unit in a magnetic resonance device includes a first supply line unit and a second supply line unit. The second supply unit is disposed at least partially coaxially to the first supply line unit. The first supply line unit and/or the second supply line unit has at least one conducting supply line element. The supply line apparatus includes an oscillation decoupling unit that has at least one oscillation-suppressing supply line element.
    Type: Grant
    Filed: February 9, 2012
    Date of Patent: February 10, 2015
    Assignee: Siemens Aktiengesellschaft
    Inventors: Andreas Krug, Johann Schuster, Stefan Stocker