Patents by Inventor Andreas Luetz

Andreas Luetz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11885928
    Abstract: A functionalized waveguide for a detector system includes an incoupling region of a main body that deflects only part of the radiation coming from an object to be detected and impinges on the front face such that the deflected part propagates as coupled-in radiation in the main body by reflections up to the decoupling region and impinges on the decoupling region. A decoupling region deflects at least part of the coupled-in radiation impinging thereon such that the deflected part exits the main body via the front or rear face to impinge on the detector system. The extent of the incoupling region in a second direction transverse to the first direction is greater than the extent of the decoupling region in the second direction. In the second direction, the incoupling region has at least two different diffractive incoupling structures which have a different deflection component in the second direction.
    Type: Grant
    Filed: January 31, 2020
    Date of Patent: January 30, 2024
    Assignee: Carl Zeiss Jena GmbH
    Inventors: Roman Kleindienst, Christoph Erler, Petr Vojtisek, Marc Junghans, Daniel Thomae, Mirko Riethmueller, Matthias Burkhardt, Alexandre Gatto, Andreas Luetz
  • Patent number: 11474347
    Abstract: Provided is a waveguide arrangement, comprising a diffractive input coupling element (11), in particular a volume hologram, a diffractive output coupling element (13), in particular a volume hologram, and optionally a beam expansion element (12), in particular a volume hologram. The expansion element (12) and the output coupling element (13) expand a light beam in different directions.
    Type: Grant
    Filed: August 10, 2017
    Date of Patent: October 18, 2022
    Assignee: Carl Zeiss Jena GmbH
    Inventors: Christoph Erler, Mirko Riethmüller, Andreas Lütz, Alexandre Gatto, Mario Sondermann
  • Publication number: 20220184909
    Abstract: Methods and apparatuses for mounting a material (1) on a carrier (6) are provided. To this end, the material is arranged on a porous layer (2) of an air bearing arrangement (2, 3).
    Type: Application
    Filed: March 12, 2020
    Publication date: June 16, 2022
    Inventors: Andreas Lütz, Alexander Pesch, Daniel Thomae, Mirko Riethmüller
  • Publication number: 20220146845
    Abstract: A functionalized waveguide for a detector system and a lighting and/or projection system includes a transparent base body. A first outcoupling region deflects at least a part of the incoupled radiation hitting the first outcoupling region, such that the deflected part exits the base body via a front side or a rear side thereof in order to hit the detector system. The extent of the first incoupling region in a second direction perpendicular to a first direction is greater than the extent of the first outcoupling region in the second direction. The base body has a second outcoupling region, which deflects at least a part of light from a light source or image source hitting the second outcoupling region as illuminating radiation, such that the deflected part is used for illumination and/or projection.
    Type: Application
    Filed: January 31, 2020
    Publication date: May 12, 2022
    Inventors: Roman KLEINDIENST, Christoph ERLER, Petr VOJTISEK, Marc JUNGHANS, Daniel THOMAE, Alexandre GATTO, Mirko RIETHMUELLER, Matthias BURKHARDT, Andreas LUETZ
  • Publication number: 20220146752
    Abstract: A waveguide for a detector system includes a transparent main body with a partially transparent incoupling region and a decoupling region that is spaced apart therefrom in a first direction. The incoupling region includes a diffractive structure which deflects only part of radiation coming from an object to be detected and impinging on the front face such that the deflected part propagates as coupled-in radiation in the main body by reflections up to the decoupling region and impinges on the decoupling region. The decoupling region deflects at least part of the coupled-in radiation impinging thereon such that the deflected part exits the main body via the front face or rear face in order to impinge on the detector system. The extent of the incoupling region in a second direction transverse to the first direction is greater than the extent of the decoupling region in the second direction.
    Type: Application
    Filed: January 31, 2020
    Publication date: May 12, 2022
    Inventors: Roman KLEINDIENST, Christoph ERLER, Petr VOJTISEK, Marc JUNGHANS, Daniel THOMAE, Mirko RIETHMUELLER, Matthias BURKHARDT, Alexandre GATTO, Andreas LUETZ
  • Publication number: 20220128766
    Abstract: A screen includes a transparent base body with a front face and a rear face, and an image sensor. The base body includes a coupling-in region and a coupling-out region at a distance therefrom in a first direction. The coupling-in region includes a diffractive structure which deflects only part of the radiation incident on the front face and originating from an object to be detected, such that the deflected part is propagated as coupled-in radiation in the base body by reflection, until it reaches the coupling-out region and is incident on said coupling-out region, and the coupling-out region deflects at least part of said incident coupled-in radiation, such that the deflected part exits the base body via the front face or the rear face and is incident on the image sensor.
    Type: Application
    Filed: January 31, 2020
    Publication date: April 28, 2022
    Inventors: Marc JUNGHANS, Roman KLEINDIENST, Christoph ERLER, Andreas LUETZ, Petr VOJTISEK, Daniel THOMAE, Mirko RIETHMUELLER, Matthias BURKHARDT, Alexandre GATTO
  • Publication number: 20220128778
    Abstract: A functionalized waveguide for a detector system includes an incoupling region of a main body that deflects only part of the radiation coming from an object to be detected and impinges on the front face such that the deflected part propagates as coupled-in radiation in the main body by reflections up to the decoupling region and impinges on the decoupling region. A decoupling region deflects at least part of the coupled-in radiation impinging thereon such that the deflected part exits the main body via the front or rear face to impinge on the detector system. The extent of the incoupling region in a second direction transverse to the first direction is greater than the extent of the decoupling region in the second direction. In the second direction, the incoupling region has at least two different diffractive incoupling structures which have a different deflection component in the second direction.
    Type: Application
    Filed: January 31, 2020
    Publication date: April 28, 2022
    Inventors: Roman KLEINDIENST, Christoph ERLER, Petr VOJTISEK, Marc JUNGHANS, Daniel THOMAE, Mirko RIETHMUELLER, Matthias BURKHARDT, Alexandre GATTO, Andreas LUETZ
  • Publication number: 20220120982
    Abstract: A functionalized waveguide for a detector system includes a base body, wherein the incoupling region thereof comprises a plurality of diffractive incoupling structures, which differ in that they have different horizontal fields of view in a plane which is spanned by a perpendicular to the front side and by a second direction transverse to the first direction, such that said structures deflect radiation from the different horizontal fields of view to the outcoupling region.
    Type: Application
    Filed: January 31, 2020
    Publication date: April 21, 2022
    Inventors: Roman KLEINDIENST, Petr VOJTISEK, Christoph ERLER, Marc JUNGHANS, Daniel THOMAE, Mirko RIETHMUELLER, Matthias BURKHARDT, Alexandre GATTO, Andreas LUETZ
  • Publication number: 20220113551
    Abstract: A functionalized waveguide for a detector system is provided. A transparent base body of the waveguide has a partly transparent coupling-in region and a coupling-out region at a distance therefrom in a first direction. The coupling-in region includes at least two volume holograms, which each deflect only part of radiation coming from an object to be detected and striking the front side such that the deflected part, as coupled-in radiation in the base body, is propagated by reflections as far as the coupling-out region and strikes the coupling-out region. The volume holograms of the coupling-in region differ in that their deflection function has different spectral angular properties. The coupling-out region deflects at least part of the coupled-in radiation striking said region such that the deflected part exits the base body via the front side or rear side, in order to strike the detector system.
    Type: Application
    Filed: January 31, 2020
    Publication date: April 14, 2022
    Inventors: Roman KLEINDIENST, Petr VOJTISEK, Christoph ERLER, Marc JUNGHANS, Daniel THOMAE, Mirko RIETHMUELLER, Matthias BURKHARDT, Alexandre GATTO, Andreas LUETZ
  • Publication number: 20190187465
    Abstract: Provided is a waveguide arrangement, comprising a diffractive input coupling element (11), in particular a volume hologram, a diffractive output coupling element (13), in particular a volume hologram, and optionally a beam expansion element (12), in particular a volume hologram. The expansion element (12) and the output coupling element (13) expand a light beam in different directions.
    Type: Application
    Filed: August 10, 2017
    Publication date: June 20, 2019
    Inventors: Christoph Erler, Mirko Riethmüller, Andreas Lütz, Alexandre Gatto, Mario Sondermann
  • Publication number: 20110130869
    Abstract: A sorting installation comprising a sorting area for sorting articles from source containers into target containers by a sorting person in a sorting area, a plurality of source container revolving conveyer devices adjacent to the sorting area, each of which being provided such that it supplies a plurality of source containers along a source container conveying circuit in a source container conveying circuit to the sorting person in the sorting area in a repeated and revolving manner until a predetermined number of articles are sorted from the respective source container into the respective target container, wherein the conveying circuit plane of the source container conveying circuit of the respective source container revolving conveyer device extends vertically and crosses the sorting area, a source container conveyer installation for automatically conveying source containers from an article storage to the source container revolving conveyer devices and for automatically conveying back source containers from
    Type: Application
    Filed: April 6, 2010
    Publication date: June 2, 2011
    Applicant: PSB INTRALOGISTICS GMBH
    Inventors: Niels Linge, Andreas Luetz, Hans Gerhard Schehl, Volker Welsch, Werner Utzinger, Klaus Hickethier, Martin Mueller
  • Publication number: 20110073534
    Abstract: Sorting installation with a sorting area for sorting articles from source containers into target containers by means of a sorting person located in the sorting area. The sorting installation includes at least one target container revolving conveyer device adjacent to the sorting area, which is provided such that it supplies a plurality of target containers along a target container conveying circuit in a conveying circuit plane to the sorting person in the sorting area in a repeated and revolving manner until the respective target container is loaded with articles from one or a plurality of source containers up to a predetermined degree, wherein the conveying circuit plane of the target container conveying circuit of the respective target container revolving conveying device extends substantially vertically and crosses the sorting area, and a target container conveying installation for supplying and returning target containers to and from the at least one target container revolving conveyer device.
    Type: Application
    Filed: September 28, 2009
    Publication date: March 31, 2011
    Inventors: Niels Linge, Andreas Luetz, Hans Gerhard Schehl, Volker Welsch, Werner Utzinger, Klaus Hickethier, Martin Mueller