Patents by Inventor Andreas Mehr

Andreas Mehr has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10794352
    Abstract: A method for starting an internal combustion engine by a compressed air starting system, in which in a first starting sequence the engagement of the starter is brought about by compressed air, a decompression valve for relieving the cylinder working space is acted on in the opening direction, and starting of the internal combustion engine is initiated by pulsed compressed air being applied to the starter. In a second starting sequence the decompression valve is acted on in the closing direction, and constant compressed air is applied to the starter.
    Type: Grant
    Filed: July 13, 2017
    Date of Patent: October 6, 2020
    Assignee: MTU FRIEDRICHSHAFEN GMBH
    Inventor: Andreas Mehr
  • Publication number: 20190277238
    Abstract: A method for starting an internal combustion engine by a compressed air starting system, in which in a first starting sequence the engagement of the starter is brought about by compressed air, a decompression valve for relieving the cylinder working space is acted on in the opening direction, and starting of the internal combustion engine is initiated by pulsed compressed air being applied to the starter. In a second starting sequence the decompression valve is acted on in the closing direction, and constant compressed air is applied to the starter.
    Type: Application
    Filed: July 13, 2017
    Publication date: September 12, 2019
    Inventor: Andreas MEHR
  • Patent number: 9909524
    Abstract: A method for operating an internal combustion engine having a motor with cylinder and an injection system having a common rail and injectors for the cylinders. Each injector has an accumulator for holding fuel from the common rail. A multiple injection of fuel is performed during each working cycle of a cylinder, including injecting a first amount in a first injection and injecting a second amount in a second injection, and determining fuel pressure for the common rail and/or the accumulator. A fuel injection amount parameter is determined for the first injection; an individual accumulator pressure and/or a common rail pressure is determined for the second injection; and a fuel injection amount parameter is determined for the second injection. The individual accumulator pressure and/or the common rail pressure are/is considered for determining the injection amount parameter of the fuel for the second injection.
    Type: Grant
    Filed: August 21, 2014
    Date of Patent: March 6, 2018
    Assignee: MTU FRIEDRICHSHAFEN GMBH
    Inventors: Markus Gölz, Robby Gerbeth, Frank Mlicki, Michael Walder, Carsten Engler, Andreas Mehr, Christian Wolf
  • Patent number: 9909547
    Abstract: In a quantity limiting valve for a fuel injection system of an internal combustion engine including a cylinder with an inflow region and an outflow region separated by a piston axially movably disposed in the cylinder and a flow limiting fluid flow path extending along the piston between the inflow and outflow regions wherein the piston is biased with its front surface into contact with a stop element, the contact area between the front surface and the stop surface includes between the piston and the stop element a contact structure providing for an intermediate space which is in communication with the inflow region thereby to expose the front surface of the piston to the pressure of the fluid in the inflow region.
    Type: Grant
    Filed: December 7, 2015
    Date of Patent: March 6, 2018
    Assignee: MTU FRIEDRICHSHAFEN GMBH
    Inventors: Robby Gerbeth, Michael Walder, Andreas Mehr, Markus Staudt, Frank Mlicki
  • Patent number: 9903331
    Abstract: A method for the injector-specific diagnosis of a fuel injection device of an internal combustion engine, including the following steps: detecting a pressure progression in an individual accumulator of an injector in a time-resolved manner; evaluating the detected pressure progression; determining if there is a fault state of the injection device in the region of the injector on the basis of the detected and evaluated pressure progression; and identifying the fault state on the basis of the detected and evaluated pressure progression.
    Type: Grant
    Filed: August 1, 2014
    Date of Patent: February 27, 2018
    Assignee: MTU FRIEDRICHSHAFEN GMBH
    Inventors: Michael Walder, Andreas Mehr, Frank Mlicki, Alexander Bernhard, Christian Wolf
  • Patent number: 9719452
    Abstract: A method for controlling an internal combustion engine, wherein a first engine control device generates a control signal to actuate a function of the engine. A switchover device transmits the control signal of the first control device to the engine to actuate the function of the engine. The first control device transmits a sign-of-life signal which indicates functionality of the control device to the switchover device. The first engine control device does not transmit the sign-of-life signal or transmits the signal incorrectly if a fault occurs which endangers proper actuation of the function of the engine by the first engine control device. If the sign-of-life signal of the first engine control device is not or is incorrectly received by the switchover device, the switchover device stops transmitting the control signals of the first engine control device and starts transmitting a control signal generated by a second engine control device to the engine to actuate the function of the engine.
    Type: Grant
    Filed: January 30, 2014
    Date of Patent: August 1, 2017
    Assignee: MTU FRIEDRICHSHAFEN GMBH
    Inventors: Andreas Mehr, Christoph Hirschle, Jan Henker, Roger Elze
  • Publication number: 20160298570
    Abstract: A method for operating an internal combustion engine having a motor with cylinder and an injection system having a common rail and injectors for the cylinders. Each injector has an accumulator for holding fuel from the common rail. A multiple injection of fuel is performed during each working cycle of a cylinder, including injecting a first amount in a first injection and injecting a second amount in a second injection, and determining fuel pressure for the common rail and/or the accumulator. A fuel injection amount parameter is determined for the first injection; an individual accumulator pressure and/or a common rail pressure is determined for the second injection; and a fuel injection amount parameter is determined for the second injection. The individual accumulator pressure and/or the common rail pressure are/is considered for determining the injection amount parameter of the fuel for the second injection.
    Type: Application
    Filed: August 21, 2014
    Publication date: October 13, 2016
    Inventors: Markus GÖLZ, Robby GERBETH, Frank MLICKI, Michael WALDER, Carsten ENGLER, Andreas MEHR, Christian WOLF
  • Publication number: 20160186709
    Abstract: A method for the injector-specific diagnosis of a fuel injection device of an internal combustion engine, including the following steps: detecting a pressure progression in an individual accumulator of an injector in a time-resolved manner; evaluating the detected pressure progression; determining if there is a fault state of the injection device in the region of the injector on the basis of the detected and evaluated pressure progression; and identifying the fault state on the basis of the detected and evaluated pressure progression.
    Type: Application
    Filed: August 1, 2014
    Publication date: June 30, 2016
    Applicant: MTU Friedrichshafen GMBH
    Inventors: Michael WALDER, Andreas MEHR, Frank MLICKI, Alexander BERNHARD, Christian WOLF
  • Publication number: 20160146145
    Abstract: A method for correcting the start of injection of injectors of an internal combustion engine, including the following steps: determining a target start of current application depending on at least one parameter of the internal combustion engine; detecting a pressure in an individual accumulator of an injector and determining a measured start of injection on the basis of the pressure; determining a target injection delay depending on at least one parameter of the internal combustion engine; calculating an actual injection delay from the target start of current application and the measured start of injection; comparing the target injection delay and the actual injection delay; and calculating a start-of-current-application correction variable on the basis of the comparison and correcting the target start of current application by the start-of-current-application correction variable.
    Type: Application
    Filed: June 16, 2014
    Publication date: May 26, 2016
    Inventors: Michael WALDER, Andreas MEHR, Carsten ENGLER, Frank MLICKI, Christian WOLF, Alexander BERNHARD
  • Publication number: 20160138509
    Abstract: A method for determining a start of injection of an injector of an internal combustion engine, including the following steps: time-resolved detecting of an individual storage pressure curve in a measurement interval; determining a test injection start with the aid of the individual storage pressure curve; determining a tendency of the individual storage pressure curve in a predetermined test interval prior to the test injection start; correcting the individual storage pressure curve subject to the tendency; and determining a start of injection with the aid of the corrected individual storage pressure curve.
    Type: Application
    Filed: June 3, 2014
    Publication date: May 19, 2016
    Inventors: Michael WALDER, Andreas MEHR, Frank MLICKI, Markus STAUDT, Robby GERBETH
  • Publication number: 20160084210
    Abstract: In a quantity limiting valve for a fuel injection system of an internal combustion engine including a cylinder with an inflow region and an outflow region separated by a piston axially movably disposed in the cylinder and a flow limiting fluid flow path extending along the piston between the inflow and outflow regions wherein the piston is biased with its front surface into contact with a stop element, the contact area between the front surface and the stop surface includes between the piston and the stop element a contact structure providing for an intermediate space which is in communication with the inflow region thereby to expose the front surface of the piston to the pressure of the fluid in the inflow region.
    Type: Application
    Filed: December 7, 2015
    Publication date: March 24, 2016
    Applicant: MTU FRIEDRICHSHAFEN GMBH
    Inventors: Robby GERBETH, Michael WALDER, Andreas MEHR, Markus STAUDT, Frank MLICKI
  • Publication number: 20160010582
    Abstract: A method for controlling an internal combustion engine, wherein a first engine control device generates a control signal to actuate a function of the engine. A switchover device transmits the control signal of the first control device to the engine to actuate the function of the engine. The first control device transmits a sign-of-life signal which indicates functionality of the control device to the switchover device. The first engine control device does not transmit the sign-of-life signal or transmits the signal incorrectly if a fault occurs which endangers proper actuation of the function of the engine by the first engine control device. If the sign-of-life signal of the first engine control device is not or is incorrectly received by the switchover device, the switchover device stops transmitting the control signals of the first engine control device and starts transmitting a control signal generated by a second engine control device to the engine to actuate the function of the engine.
    Type: Application
    Filed: January 30, 2014
    Publication date: January 14, 2016
    Inventors: Andreas MEHR, Christoph HIRSCHLE, Jan HENKER, Roger ELZE
  • Patent number: 7748131
    Abstract: The invention relates to a method of inspecting gears during their manufacture in the gear cutting machine, wherein the respective workpiece is traveled to by the tool at specific reference points to determine any deviations. The setting of the tool can be corrected by means of these deviations via a control loop.
    Type: Grant
    Filed: May 18, 2006
    Date of Patent: July 6, 2010
    Assignee: Liebherr-Verzahntechnik GmbH
    Inventors: Klaus Finkenwirth, Andreas Mehr
  • Publication number: 20090064518
    Abstract: The invention relates to a method of inspecting gears during their manufacture in the gear cutting machine, wherein the respective workpiece is traveled to by the tool at specific reference points to determine any deviations. The setting of the tool can be corrected by means of these deviations via a control loop.
    Type: Application
    Filed: May 18, 2006
    Publication date: March 12, 2009
    Inventors: Klaus Finkenwirth, Andreas Mehr