Patents by Inventor Andreas N. Dorsel

Andreas N. Dorsel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7531303
    Abstract: A method, apparatus for executing the method, and computer program products for use in such an apparatus. The method includes scanning an interrogating light across multiple sites on an array package including an addressable array of multiple features of different moieties, which scanned sites include multiple array features. Signals from respective scanned sites emitted in response to the interrogating light are detected. The interrogating light power is altered for a first site on the array package during the array scan, based on location of the first site or on a determination that the emitted signal from the first site will be outside a predetermined value absent the altering (which allows for protecting a detector against expected overly bright sites), or is altered during the array scan based on the detected interrogating light power (which allows for compensating for light source drift during an array scan).
    Type: Grant
    Filed: December 21, 2001
    Date of Patent: May 12, 2009
    Assignee: Agilent Technologies, Inc.
    Inventors: Andreas N. Dorsel, Kyle J. Schleifer, Elecia C. White, Charles S. Ladd, Debra A. Sillman
  • Patent number: 7504072
    Abstract: Array scanning methods that focus on the far side and devices configured for use in the same are provided. In reading arrays according to the subject methods, an array is placed in a reading position of a scanning device so that the nominal focal plane of the scanning device is present within the array substrate at a predetermined fixed substrate thickness fraction distance from the far-side of the array, and the array is then read by the device. As such, the subject scanner devices of the present invention are configured to hold an array substrate in a reading position of the device in which the device's nominal focal plane is present within the array substrate. The subject methods and devices find use in a variety of different applications, including both genomic and proteomic applications.
    Type: Grant
    Filed: September 30, 2002
    Date of Patent: March 17, 2009
    Assignee: Agilent Technologies, Inc.
    Inventor: Andreas N. Dorsel
  • Patent number: 7412085
    Abstract: Methods for correcting systematic errors in the measured position of deposited features of a nucleic acid array on a substrate. Systematic errors are modeled by an algorithmic model based on measuring the positions (and possibly other properties) of a subset of the features, and a model is constructed for predicting deviations in feature position from an ideal grid. Deviations arising in the deposition process, the scanning process, or both may be corrected.
    Type: Grant
    Filed: March 13, 2006
    Date of Patent: August 12, 2008
    Assignee: Agilent Technologies, Inc.
    Inventors: Herbert F. Cattell, Andreas N. Dorsel, John W. Sadler, Nicholas M. Sampas
  • Patent number: 7205553
    Abstract: A method, apparatus, and computer program product for reading fluorescence signals from an array of chemical moieties (such as different sequence peptides or polynucleotides, for example different DNA sequences). In the method the spatial sequence of scanned locations need not be the same as the temporal sequence. For example, a later illuminated line may be spatially closer to an earlier illuminated line than is a temporally intervening illuminated line.
    Type: Grant
    Filed: June 29, 2004
    Date of Patent: April 17, 2007
    Assignee: Agilent Technologies, Inc.
    Inventors: Andreas N. Dorsel, Glenda C. Delenstarr, Kenneth L. Staton, George P. Tsai
  • Patent number: 7198939
    Abstract: A method and apparatus of interrogating an addressable array unit, which includes a substrate, a light reflecting layer on a front side of the substrate, and a plurality of features on a front side of the array. The method may include, for each of multiple features, illuminating the feature simultaneously with reflected and non-reflected interrogating light. A light emitted from respective features is detected. Either or both, constructive interference of interrogating light at the features, or constructive interference of light emitted from the features, can be obtained to allow lowering of light power from the source, enhanced signal, or reduced noise, or combinations of the foregoing. High depth discrimination may also be obtained without the need for a confocal detection system with conventional pinhole.
    Type: Grant
    Filed: February 21, 2002
    Date of Patent: April 3, 2007
    Assignee: Agilent Technologies, Inc.
    Inventors: Andreas N. Dorsel, David A. King, Nicholas M. Sampas
  • Patent number: 7089123
    Abstract: An optical scanning system adapted to physically adjust scanner settings in response to control feature readings is disclosed. The scanner and methodology finds particular use in reading of biopolymer arrays. The system may operate in any of a number of ways such that optimal data from scans is obtained. It may also be possible to use the system as a tool to aid in manufacture of arrays by providing feedback to a manufacturer regarding the signal produce for a given batch of samples tested.
    Type: Grant
    Filed: September 30, 2002
    Date of Patent: August 8, 2006
    Assignee: Agilent Technologies, Inc
    Inventors: John F. Corson, Andreas N. Dorsel
  • Patent number: 7067783
    Abstract: Automated methods and systems for determining an in-focus-distance for a position on the surface of a molecular array substrate using a molecular array scanner are provided. A signal from a first position of an array substrate is detected and noise is filtered out of the detected signal using a symmetrical filter to produce an in-focus-distance. In one embodiment, the in-focus-distance is utilized as an estimated in-focus-distance at a second position of the array substrate. The method finds use in maintaining the focus of a light source while scanning the array by the scanner. Also provided are methods of assaying a sample using the methods and systems of the invention, and kits for performing the invention. The subject invention finds use in a variety of different applications, including both genomics and proteomics applications.
    Type: Grant
    Filed: September 30, 2002
    Date of Patent: June 27, 2006
    Assignee: Agilent Technologies, Inc.
    Inventors: Bo U. Curry, Andreas N. Dorsel, Jayati Ghosh, Kenneth L. Staton
  • Patent number: 7057185
    Abstract: A maximum sensitivity optical scanning system is disclosed. It finds use in a variety of applications, including the reading of biopolymeric arrays. It operates by scanning sample at a setting selected to result in signal saturation for some, but not all available data. Subsequent scans of the same area are taken at lower sensitivity settings (in terms of detector gain and/or excitation light source gain or attenuation) and data from at least the previously saturated regions is obtained. If system sensitivity is set too low to produce useful results, optional features may adjust sensitivity upward and follow with an increased sensitivity scan as a remedial measure. Full signal sensitivity is better preserved as most needed in taking data for the weakest signals first with the high-level scan. Data for sample producing stronger signals that can better tolerate photobleaching is then taken in one way or another.
    Type: Grant
    Filed: August 2, 2004
    Date of Patent: June 6, 2006
    Assignee: Agilent Technologies, Inc.
    Inventors: Bo U. Curry, Andreas N. Dorsel, Kyle J. Schleifer, Debra A. Sillman
  • Patent number: 7054003
    Abstract: A method of interrogating an addressable array having a plurality of different chemical features. The method may include simultaneously illuminating different regions of the array with light of different intensities (which, for example, can, but need not be, also of a same waveband). Light emitted from the different regions in response to the illuminating (which light, for example, can, but need not be, of a same waveband) may be simultaneously detected with different detectors. An apparatus, addressable array unit, and related methods are further provided.
    Type: Grant
    Filed: September 28, 2004
    Date of Patent: May 30, 2006
    Assignee: Agilent Technologies, Inc.
    Inventor: Andreas N. Dorsel
  • Patent number: 7027629
    Abstract: Methods for correcting systematic errors in the measured position of deposited features of a nucleic acid array on a substrate. Systematic errors are modeled by an algorithmic model based on measuring the positions (and possibly other properties) of a subset of the features, and a model is constructed for predicting deviations in feature position from an ideal grid. Deviations arising in the deposition process, the scanning process, or both may be corrected.
    Type: Grant
    Filed: September 9, 2002
    Date of Patent: April 11, 2006
    Assignee: Agilent Technologies, Inc.
    Inventors: Herbert F. Cattell, Andreas N. Dorsel, John W. Sadler, Nicholas M. Sampas
  • Patent number: 7018842
    Abstract: A method of interrogating an addressable array unit having a transparent substrate with a back surface, and an array with a plurality of different chemical features on a front surface. The method may include illuminating the features while the array is dry, with an interrogating light which is directed through the substrate from the back surface and onto the chemical features on the front surface. The light emitted from respective features in response to the interrogating light may be detected, which detected light has passed from the front surface, through the substrate and out the back surface. In one arrangement the light is emitted from locations of the features which are spaced from the front surface a distance of less than one-eighth of the wavelength of the illuminating light in a gas or a vacuum which is in contact with the dry array. Other methods and a package containing an addressable array are also provided.
    Type: Grant
    Filed: February 28, 2002
    Date of Patent: March 28, 2006
    Assignee: Agilent Technologies, Inc.
    Inventors: Andreas N. Dorsel, John F. Corson
  • Patent number: 7013220
    Abstract: Optical scanner system approaches are described in which signal saturation data is produced in real-time. The data generated may be used for tuning a subsequent scan, in protection of optical detector components from damage or otherwise. Approaches for obtaining and storing or expressing the data are also disclosed. Also provided are methods of using the subject system is biopolymer array based application, including genomic and proteomic applications.
    Type: Grant
    Filed: September 30, 2002
    Date of Patent: March 14, 2006
    Assignee: Agilent Technologies, Inc.
    Inventors: Andreas N. Dorsel, Jeffrey M. McMillan
  • Patent number: 6993172
    Abstract: A method and system for employing pixel-based, signal-intensity data contained within areas of a scanned image of a molecular array corresponding to features and feature backgrounds in order to determine whether or not the features or feature backgrounds have non-uniform signal intensities and are thus outlier features and outlier feature backgrounds. A calculated, estimated variance for the signal intensities within a feature or feature background is compared to a maximum allowable variance calculated for the feature or feature background based on a signal intensity variance model. When the experimental variance is less than or equal to the maximum allowable variance, the feature or feature background is considered to have acceptable signal-intensity uniformity. Otherwise, the feature or feature background is flagged as an outlier feature or outlier feature background.
    Type: Grant
    Filed: June 29, 2001
    Date of Patent: January 31, 2006
    Assignee: Agilent Technologies, Inc.
    Inventors: Scott D. Connell, Herbert F. Cattell, Glenda C. Delenstarr, Nicholas M Sampas, Andreas N. Dorsel
  • Patent number: 6956203
    Abstract: A self-calibrating scanning system and method are used in the analysis of biomolecules on a microarray. The self-calibrating scanning system comprises an excitation light source, an optical portion, a detection portion and a calibration portion that includes a calibration apparatus and compensation portion. The calibration apparatus comprises a light source having a highly reproducible or calibrated light based on a preselected or reference light level. The calibration apparatus emits the calibrated light that is measured by the detection portion of the scanning equipment. If the detection components are stable, the components will measure a constant output value for the calibrated light over time. As a detection component changes with time, the output value will change for the same calibrated light. The method comprises the steps of initially calibrating the detection portion of the scanning system and subsequently calibrating the detection portion to compensate for sensitivity changes.
    Type: Grant
    Filed: May 24, 2004
    Date of Patent: October 18, 2005
    Assignee: Agilent Technologies, Inc.
    Inventors: Kenneth L. Staton, Andreas N. Dorsel
  • Patent number: 6930301
    Abstract: High quantum efficiency point detector system. The system includes a light source generating a light beam having an area and includes a CCD detector with a cell size comparable to the light beam area. The CCD cell may include a single pixel or at least two pixels.
    Type: Grant
    Filed: May 10, 2004
    Date of Patent: August 16, 2005
    Assignee: Agilent Technologies, Inc.
    Inventors: Kenneth L. Staton, Andreas N. Dorsel
  • Patent number: 6929951
    Abstract: A method and system for calibrating molecular arrays to a reference molecular array, and for subsequently calibrating the molecular arrays to maintain a constant signal-intensity-to-label-concentration ratio. In the first step of the two-step calibration method, a reference array coated with the fluorophore or chromophore used to label probe molecules is employed, while in the second step of the two-step method, a reference array coated with a stable dye is employed.
    Type: Grant
    Filed: February 28, 2002
    Date of Patent: August 16, 2005
    Assignee: Agilent Technologies, Inc.
    Inventors: John F. Corson, Andreas N. Dorsel, Russell A. Parker, Andre B. Chow
  • Patent number: 6902112
    Abstract: Apparatus and method for scanning a surface. An optical system generates a light beam to illuminate a surface. A carrier supports the surface for reciprocating motion with respect to the light beam to form one axis of a raster. A propulsion system moves the carrier at a substantially constant speed and a position sensor provides an output signal representing the surface position with respect to the light beam. A control system responsive to the output signal modulates a sample period reciprocally to carrier speed to achieve substantially constant scan length per sample and to control data acquisition timing.
    Type: Grant
    Filed: July 15, 2003
    Date of Patent: June 7, 2005
    Assignee: Agilent Technologies, Inc.
    Inventors: John W. Sadler, Andreas N. Dorsel, Kenneth L. Staton
  • Patent number: 6870166
    Abstract: A maximum sensitivity optical scanning system is disclosed. It finds use in a variety of applications, including the reading of biopolymeric arrays. It operates by scanning sample at a setting selected to result in signal saturation for some, but not all available data. Subsequent scans of the same area are taken at lower sensitivity settings (in terms of detector gain and/or excitation light source gain or attenuation) and data from at least the previously saturated regions is obtained. If system sensitivity is set too low to produce useful results, optional features may adjust sensitivity upward and follow with an increased sensitivity scan as a remedial measure. Full signal sensitivity is better preserved as most needed in taking data for the weakest signals first with the high-level scan. Data for sample producing stronger signals that can better tolerate photobleaching is then taken in one way or another.
    Type: Grant
    Filed: February 28, 2002
    Date of Patent: March 22, 2005
    Assignee: Agilent Technologies, Inc.
    Inventors: Bo U. Curry, Andreas N. Dorsel, Kyle J. Schleifer, Debra A. Sillman
  • Patent number: 6825929
    Abstract: A method of interrogating an addressable array having a plurality of different chemical features. The method may include simultaneously illuminating different regions of the array with light of different intensities (which, for example, can, but need not be, also of a same waveband). Light emitted from the different regions in response to the illuminating (which light, for example, can, but need not be, of a same waveband) may be simultaneously detected with different detectors. An apparatus, addressable array unit, and related methods are further provided.
    Type: Grant
    Filed: September 30, 2002
    Date of Patent: November 30, 2004
    Assignee: Agilent Technologies, Inc.
    Inventor: Andreas N. Dorsel
  • Publication number: 20040217271
    Abstract: A self-calibrating scanning system and method are used in the analysis of biomolecules on a microarray. The self-calibrating scanning system comprises an excitation light source, an optical portion, a detection portion and a calibration portion that includes a calibration apparatus and compensation portion. The calibration apparatus comprises a light source having a highly reproducible or calibrated light based on a preselected or reference light level. The calibration apparatus emits the calibrated light that is measured by the detection portion of the scanning equipment. If the detection components are stable, the components will measure a constant output value for the calibrated light over time. As a detection component changes with time, the output value will change for the same calibrated light. The method comprises the steps of initially calibrating the detection portion of the scanning system and subsequently calibrating the detection portion to compensate for sensitivity changes.
    Type: Application
    Filed: May 24, 2004
    Publication date: November 4, 2004
    Inventors: Kenneth L. Staton, Andreas N. Dorsel