Patents by Inventor Andreas NIEDERMEIER

Andreas NIEDERMEIER has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250201256
    Abstract: An improved concept for coding sample values of a spectral envelope is obtained by combining spectrotemporal prediction on the one hand and context-based entropy coding the residuals, on the other hand, while particularly determining the context for a current sample value dependent on a measure of a deviation between a pair of already coded/decoded sample values of the spectral envelope in a spectrotemporal neighborhood of the current sample value. The combination of the spectrotemporal prediction on the one hand and the context-based entropy coding of the prediction residuals with selecting the context depending on the deviation measure on the other hand harmonizes with the nature of spectral envelopes.
    Type: Application
    Filed: December 26, 2024
    Publication date: June 19, 2025
    Inventors: Florin GHIDO, Andreas NIEDERMEIER
  • Publication number: 20240194209
    Abstract: An apparatus for processing an audio input signal to obtain an audio output signal according to an embodiment. The apparatus has a signal analyser configured for determining information on an auditory roughness of one or more spectral bands of the audio input signal. Moreover, the apparatus has a signal processor configured for processing the audio input signal depending on the information on the auditory roughness of the one or more spectral bands.
    Type: Application
    Filed: December 19, 2023
    Publication date: June 13, 2024
    Inventors: Sascha DISCH, Steven VAN DE PAR, Andreas NIEDERMEIER, Bernd EDLER
  • Publication number: 20240129560
    Abstract: Audio splicing is rendered more effective by the use of one or more truncation unit packets inserted into the audio data stream so as to indicate to an audio decoder, for a predetermined access unit, an end portion of an audio frame with which the predetermined access unit is associated, as to be discarded in playout.
    Type: Application
    Filed: December 26, 2023
    Publication date: April 18, 2024
    Inventors: Herbert THOMA, Robert BLEIDT, Stefan KRAEGELOH, Max NEUENDORF, Achim KUNTZ, Andreas NIEDERMEIER, Michael KRATSCHMER
  • Publication number: 20240079020
    Abstract: An improved concept for coding sample values of a spectral envelope is obtained by combining spectrotemporal prediction on the one hand and context-based entropy coding the residuals, on the other hand, while particularly determining the context for a current sample value dependent on a measure of a deviation between a pair of already coded/decoded sample values of the spectral envelope in a spectrotemporal neighborhood of the current sample value. The combination of the spectrotemporal prediction on the one hand and the context-based entropy coding of the prediction residuals with selecting the context depending on the deviation measure on the other hand harmonizes with the nature of spectral envelopes.
    Type: Application
    Filed: September 11, 2023
    Publication date: March 7, 2024
    Inventors: Florin GHIDO, Andreas NIEDERMEIER
  • Publication number: 20230074155
    Abstract: Audio splicing is rendered more effective by the use of one or more truncation unit packets inserted into the audio data stream so as to indicate to an audio decoder, for a predetermined access unit, an end portion of an audio frame with which the predetermined access unit is associated, as to be discarded in playout.
    Type: Application
    Filed: September 8, 2022
    Publication date: March 9, 2023
    Inventors: Herbert THOMA, Robert BLEIDT, Stefan KRAEGELOH, Max NEUENDORF, Achim KUNTZ, Andreas NIEDERMEIER, Michael KRATSCHMER
  • Publication number: 20220208202
    Abstract: An improved concept for coding sample values of a spectral envelope is obtained by combining spectrotemporal prediction on the one hand and context-based entropy coding the residuals, on the other hand, while particularly determining the context for a current sample value dependent on a measure of a deviation between a pair of already coded/decoded sample values of the spectral envelope in a spectrotemporal neighborhood of the current sample value. The combination of the spectrotemporal prediction on the one hand and the context-based entropy coding of the prediction residuals with selecting the context depending on the deviation measure on the other hand harmonizes with the nature of spectral envelopes.
    Type: Application
    Filed: January 7, 2022
    Publication date: June 30, 2022
    Inventors: Florin GHIDO, Andreas NIEDERMEIER
  • Publication number: 20220157325
    Abstract: An apparatus for decoding an encoded audio signal having an encoded representation of a first set of first spectral portions and an encoded representation of parametric data indicating spectral energies for a second set of second spectral portions, has: an audio decoder for decoding the encoded representation of the first set of the first spectral portions to obtain a first set of first spectral portions and for decoding the encoded representation of the parametric data to obtain a decoded parametric data for the second set of second spectral portions indicating, for individual reconstruction bands, individual energies; a frequency regenerator for reconstructing spectral values in a reconstruction band having a second spectral portion using a first spectral portion of the first set of the first spectral portions and an individual energy for the reconstruction band, the reconstruction band having a first spectral portion and the second spectral portion.
    Type: Application
    Filed: January 25, 2022
    Publication date: May 19, 2022
    Inventors: Andreas NIEDERMEIER, Christian ERTEL, Ralf GEIGER, Florin GHIDO, Christian HELMRICH
  • Publication number: 20220139406
    Abstract: Audio encoder for encoding a multichannel signal is shown. The audio encoder includes a downmixer for downmixing the multichannel signal to obtain a downmix signal, a linear prediction domain core encoder for encoding the downmix signal, wherein the downmix signal has a low band and a high band, wherein the linear prediction domain core encoder is configured to apply a bandwidth extension processing for parametrically encoding the high band, a filterbank for generating a spectral representation of the multichannel signal, and a joint multichannel encoder configured to process the spectral representation including the low band and the high band of the multichannel signal to generate multichannel information.
    Type: Application
    Filed: January 13, 2022
    Publication date: May 5, 2022
    Inventors: Sascha DISCH, Guillaume FUCHS, Emmanuel RAVELLI, Christian NEUKAM, Konstantin SCHMIDT, Conrad BENNDORF, Andreas NIEDERMEIER, Benjamin SCHUBERT, Ralf GEIGER
  • Publication number: 20220093112
    Abstract: A schematic block diagram of an audio encoder for encoding a multichannel audio signal is shown. The audio encoder includes a linear prediction domain encoder, a frequency domain encoder, and a controller for switching between the linear prediction domain encoder and the frequency domain encoder. The controller is configured such that a portion of the multichannel signal is represented either by an encoded frame of the linear prediction domain encoder or by an encoded frame of the frequency domain encoder. The linear prediction domain encoder includes a downmixer for downmixing the multichannel signal to obtain a downmixed signal. The linear prediction domain encoder further includes a linear prediction domain core encoder for encoding the downmix signal and furthermore, the linear prediction domain encoder includes a first joint multichannel encoder for generating first multichannel information from the multichannel signal.
    Type: Application
    Filed: August 24, 2021
    Publication date: March 24, 2022
    Inventors: Sascha DISCH, Guillaume FUCHS, Emmanuel RAVELLI, Christian NEUKAM, Konstantin SCHMIDT, Conrad BENNDORF, Andreas NIEDERMEIER, Benjamin SCHUBERT, Ralf GEIGER
  • Publication number: 20210383818
    Abstract: An apparatus for processing an encoded audio signal, which includes a sequence of access units, each access unit including a core signal with a first spectral width and parameters describing a spectrum above the first spectral width, has a demultiplexer generating, from an access unit of the encoded audio signal, the core signal and a set of the parameters, an upsampler upsampling the core signal of the access unit and outputting a first upsampled spectrum and a timely consecutive second upsampled spectrum, the first upsampled spectrum and the second upsampled spectrum, both, having a same content as the core signal and having a second spectral width being greater than the first spectral width of the core spectrum, a parameter converter converting parameters of the set of parameters of the access unit to obtain converted parameters, and a spectral gap filling processor processing the first upsampled spectrum and the second upsampled spectrum using the converted parameters.
    Type: Application
    Filed: August 19, 2021
    Publication date: December 9, 2021
    Inventors: Andreas NIEDERMEIER, Sascha DISCH
  • Publication number: 20210352342
    Abstract: Audio splicing is rendered more effective by the use of one or more truncation unit packets inserted into the audio data stream so as to indicate to an audio decoder, for a predetermined access unit, an end portion of an audio frame with which the predetermined access unit is associated, as to be discarded in playout.
    Type: Application
    Filed: May 25, 2021
    Publication date: November 11, 2021
    Inventors: Herbert THOMA, Robert BLEIDT, Stefan KRAEGELOH, Max NEUENDORF, Achim KUNTZ, Andreas NIEDERMEIER, Michael KRATSCHMER
  • Publication number: 20210217426
    Abstract: An apparatus for decoding an encoded signal includes: an audio decoder for decoding an encoded representation of a first set of first spectral portions to obtain a decoded first set of first spectral portions; a parametric decoder for decoding an encoded parametric representation of a second set of second spectral portions to obtain a decoded representation of the parametric representation, wherein the parametric information includes, for each target frequency tile, a source region identification as a matching information; and a frequency regenerator for regenerating a target frequency tile using a source region from the first set of first spectral portions identified by the matching information.
    Type: Application
    Filed: March 30, 2021
    Publication date: July 15, 2021
    Inventors: Christian NEUKAM, Sascha DISCH, Frederik NAGEL, Andreas NIEDERMEIER, Konstantin SCHMIDT, Balaji Nagendran THOSHKAHNA
  • Publication number: 20210134308
    Abstract: A processor for processing an audio signal has: an analyzer for deriving a window control signal from the audio signal indicating a change from a first asymmetric window to a second window, or indicating a change from a third window to a fourth asymmetric window, wherein the second window is shorter than the first window, or wherein the third window is shorter than the fourth window; a window constructor for constructing the second window using a first overlap portion of the first asymmetric window, wherein the window constructor is configured to determine a first overlap portion of the second window using a truncated first overlap portion of the first asymmetric window, or wherein the window constructor is configured to calculate a second overlap portion of the third window using a truncated second overlap portion of the fourth asymmetric window; and a windower for applying the first and second windows or the third and fourth windows to obtain windowed audio signal portions.
    Type: Application
    Filed: January 8, 2021
    Publication date: May 6, 2021
    Inventors: Guillaume FUCHS, Markus MULTRUS, Matthias NEUSINGER, Andreas NIEDERMEIER, Markus SCHNELL
  • Publication number: 20210082447
    Abstract: An audio similarity evaluator obtains envelope signals for a plurality of frequency ranges on the basis of an input audio signal. The audio similarity evaluator is configured to obtain a modulation information associated with the envelope signals for a plurality of modulation frequency ranges, wherein the modulation information describes the modulation of the envelope signals. The audio similarity evaluator is configured to compare the obtained modulation information with a reference modulation information associated with a reference audio signal, in order to obtain an information about a similarity between the input audio signal and the reference audio signal. An audio encoder uses such an audio similarity evaluator. Another audio similarity evaluator uses a neural net trained using the audio similarity evaluator.
    Type: Application
    Filed: November 27, 2020
    Publication date: March 18, 2021
    Inventors: Sascha DISCH, Steven VAN DE PAR, Andreas NIEDERMEIER, Elena BURDIEL PÉREZ, Bernd EDLER
  • Publication number: 20200395026
    Abstract: An improved concept for coding sample values of a spectral envelope is obtained by combining spectrotemporal prediction on the one hand and context-based entropy coding the residuals, on the other hand, while particularly determining the context for a current sample value dependent on a measure of a deviation between a pair of already coded/decoded sample values of the spectral envelope in a spectrotemporal neighborhood of the current sample value. The combination of the spectrotemporal prediction on the one hand and the context-based entropy coding of the prediction residuals with selecting the context depending on the deviation measure on the other hand harmonizes with the nature of spectral envelopes.
    Type: Application
    Filed: July 1, 2020
    Publication date: December 17, 2020
    Inventors: Florin GHIDO, Andreas NIEDERMEIER
  • Publication number: 20200395024
    Abstract: A schematic block diagram of an audio encoder for encoding a multichannel audio signal is shown. The audio encoder includes a linear prediction domain encoder, a frequency domain encoder, and a controller for switching between the linear prediction domain encoder and the frequency domain encoder. The controller is configured such that a portion of the multichannel signal is represented either by an encoded frame of the linear prediction domain encoder or by an encoded frame of the frequency domain encoder. The linear prediction domain encoder includes a downmixer for downmixing the multichannel signal to obtain a downmixed signal. The linear prediction domain encoder further includes a linear prediction domain core encoder for encoding the downmix signal and furthermore, the linear prediction domain encoder includes a first joint multichannel encoder for generating first multichannel information from the multichannel signal.
    Type: Application
    Filed: August 31, 2020
    Publication date: December 17, 2020
    Inventors: Sascha DISCH, Guillaume FUCHS, Emmanuel RAVELLI, Christian NEUKAM, Konstantin SCHMIDT, Conrad BENNDORF, Andreas NIEDERMEIER, Benjamin SCHUBERT, Ralf GEIGER
  • Publication number: 20190333525
    Abstract: Audio encoder for encoding a multichannel signal is shown. The audio encoder includes a downmixer for downmixing the multichannel signal to obtain a downmix signal, a linear prediction domain core encoder for encoding the downmix signal, wherein the downmix signal has a low band and a high band, wherein the linear prediction domain core encoder is configured to apply a bandwidth extension processing for parametrically encoding the high band, a filterbank for generating a spectral representation of the multichannel signal, and a joint multichannel encoder configured to process the spectral representation including the low band and the high band of the multichannel signal to generate multichannel information.
    Type: Application
    Filed: July 9, 2019
    Publication date: October 31, 2019
    Inventors: Sascha DISCH, Guillaume FUCHS, Emmanuel RAVELLI, Christian NEUKAM, Konstantin SCHMIDT, Conrad BENNDORF, Andreas NIEDERMEIER, Benjamin SCHUBERT, Ralf GEIGER
  • Publication number: 20190251986
    Abstract: An apparatus for decoding an encoded audio signal having an encoded representation of a first set of first spectral portions and an encoded representation of parametric data indicating spectral energies for a second set of second spectral portions, has: an audio decoder for decoding the encoded representation of the first set of the first spectral portions to obtain a first set of first spectral portions and for decoding the encoded representation of the parametric data to obtain a decoded parametric data for the second set of second spectral portions indicating, for individual reconstruction bands, individual energies; a frequency regenerator for reconstructing spectral values in a reconstruction band having a second spectral portion using a first spectral portion of the first set of the first spectral portions and an individual energy for the reconstruction band, the reconstruction band having a first spectral portion and the second spectral portion.
    Type: Application
    Filed: April 26, 2019
    Publication date: August 15, 2019
    Inventors: Andreas NIEDERMEIER, Christian ERTEL, Ralf GEIGER, Florin GHIDO, Christian HELMRICH
  • Publication number: 20190221218
    Abstract: A schematic block diagram of an audio encoder for encoding a multichannel audio signal is shown. The audio encoder includes a linear prediction domain encoder, a frequency domain encoder, and a controller for switching between the linear prediction domain encoder and the frequency domain encoder. The controller is configured such that a portion of the multichannel signal is represented either by an encoded frame of the linear prediction domain encoder or by an encoded frame of the frequency domain encoder. The linear prediction domain encoder includes a downmixer for downmixing the multichannel signal to obtain a downmixed signal. The linear prediction domain encoder further includes a linear prediction domain core encoder for encoding the downmix signal and furthermore, the linear prediction domain encoder includes a first joint multichannel encoder for generating first multichannel information from the multichannel signal.
    Type: Application
    Filed: March 22, 2019
    Publication date: July 18, 2019
    Inventors: Sascha DISCH, Guillaume FUCHS, Emmanuel RAVELLI, Christian NEUKAM, Konstantin SCHMIDT, Conrad BENNDORF, Andreas NIEDERMEIER, Benjamin SCHUBERT, Ralf GEIGER
  • Publication number: 20190198030
    Abstract: A processor for processing an audio signal has: an analyzer for deriving a window control signal from the audio signal indicating a change from a first asymmetric window to a second window, or indicating a change from a third window to a fourth asymmetric window, wherein the second window is shorter than the first window, or wherein the third window is shorter than the fourth window; a window constructor for constructing the second window using a first overlap portion of the first asymmetric window, wherein the window constructor is configured to determine a first overlap portion of the second window using a truncated first overlap portion of the first asymmetric window, or wherein the window constructor is configured to calculate a second overlap portion of the third window using a truncated second overlap portion of the fourth asymmetric window; and a windower for applying the first and second windows or the third and fourth windows to obtain windowed audio signal portions.
    Type: Application
    Filed: February 28, 2019
    Publication date: June 27, 2019
    Inventors: Guillaume FUCHS, Markus MULTRUS, Matthias NEUSINGER, Andreas NIEDERMEIER, Markus SCHNELL