Patents by Inventor Andreas Rückerl

Andreas Rückerl has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11804568
    Abstract: Optoelectronic components, groups of optoelectronic components, and methods for producing a component or a plurality of optoelectronic components are provided. The method may include providing a growth substrate having a buffer layer arranged thereon. The buffer layer may be structured in such a way that it has a plurality of the openings which are spaced apart from one another in lateral directions. A plurality of semiconductor bodies may be formed in the openings, wherein in the areas of the openings, the buffer layer has subregions which are arranged in a vertical direction between the growth substrate and the semiconductor bodies. The growth substrate may be detached from the semiconductor bodies. The buffer layer may be removed at least in the areas of the subregions.
    Type: Grant
    Filed: April 26, 2019
    Date of Patent: October 31, 2023
    Assignee: Osram OLED GmbH
    Inventors: Rainer Hartmann, Clemens Vierheilig, Tobias Meyer, Andreas Rueckerl, Tilman Schimpke, Michael Binder
  • Publication number: 20230125745
    Abstract: An optoelectronic component may include a support and multiple optoelectronic semiconductor chips that can be actuated individually and independently of one another. Each semiconductor chip may include a semiconductor layer sequence. Each semiconductor chip may have an electrically insulating passivation layer on the respective lateral surface of the semiconductor layer sequence. The semiconductor chip(s) are assigned to a first group, which may be paired with a common boundary field generating device arranged on the passivation layer face facing away from the semiconductor layer sequence at an active zone for each semiconductor chip of the first group. The boundary field generating device is designed to at least temporarily generate an electric field in the boundary regions of the active zone so that a flow of current through the semiconductor layer sequences can be controlled in the boundary regions during the operation of the semiconductor chips of the first group.
    Type: Application
    Filed: October 21, 2020
    Publication date: April 27, 2023
    Inventors: Michael BINDER, Andreas RÜCKERL, Roland ZEISEL
  • Publication number: 20220393058
    Abstract: In an embodiment, an optoelectronic semiconductor component includes a semiconductor layer sequence with a doped first layer, a doped second layer, an active zone configured to generate radiation by electroluminescence between the first layer and the second layer, and a side surface extending transversely to the active zone and delimiting the semiconductor layer sequence in a lateral direction, two electrodes for electrical contact between the first and second layers and a cover layer located on the side surface in a region of the first layer, wherein the cover layer is in direct contact with the first layer, wherein a material of the cover layer alone and its direct contact with the first layer are configured to cause a formation of a depletion zone in the first layer, wherein the depletion zone comprises a lower concentration of majority charge carriers compared to a rest of the first layer, wherein the cover layer comprises a metal or a metal compound, and wherein the cover layer forms a Schottky contact w
    Type: Application
    Filed: November 3, 2020
    Publication date: December 8, 2022
    Inventors: Michael Binder, Andreas Rückerl, Roland Zeisel, Tobias Meyer, Kerstin Neveling, Christine Rafael, Moses Richter, Rainer Hartmann, Clemens Vierheilig
  • Patent number: 11075323
    Abstract: A method of producing a radiation-emitting component includes: A) providing a dielectric layer that degrades against environmental influences; B) applying a first protective layer to the dielectric layer by an atomic layer deposition method, wherein the first protective layer includes elemental Si or in a compound; and C) applying a second protective layer to the first protective layer, the second protective layer including elemental Si, wherein a layer thickness of the first protective layer is less than or equal to 1 nm so that the first protective layer reduces or prevents a degradation of the dielectric layer.
    Type: Grant
    Filed: May 24, 2017
    Date of Patent: July 27, 2021
    Assignee: OSRAM OLED GmbH
    Inventor: Andreas Rückerl
  • Publication number: 20210043796
    Abstract: Optoelectronic components, groups of optoelectronic components, and methods for producing a component or a plurality of optoelectronic components are provided. The method may include providing a growth substrate having a buffer layer arranged thereon. The buffer layer may be structured in such a way that it has a plurality of the openings which are spaced apart from one another in lateral directions. A plurality of semiconductor bodies may be formed in the openings, wherein in the areas of the openings, the buffer layer has subregions which are arranged in a vertical direction between the growth substrate and the semiconductor bodies. The growth substrate may be detached from the semiconductor bodies. The buffer layer may be removed at least in the areas of the subregions.
    Type: Application
    Filed: April 26, 2019
    Publication date: February 11, 2021
    Inventors: Rainer HARTMANN, Clemens VIERHEILIG, Tobias MEYER, Andreas RUECKERL, Tilman SCHIMPKE, Michael BINDER
  • Patent number: 10872783
    Abstract: The invention relates to a method for structuring a nitride layer (2), comprising the following steps: A) providing a nitride layer (2) formed with silicon nitride of a first type, B) defining regions (40) of said nitride layer (2) to be transformed, and C) inserting the nitride layer (2) into a transformation chamber for the duration of a transformation period, said transformation period being selected such that—at least 80% of the nitride layer (2) regions (40) to be transformed are transformed into oxide regions (41) formed with silicon oxide, and—remaining nitride layer (2) regions (21) remain at least 80% untransformed.
    Type: Grant
    Filed: December 13, 2019
    Date of Patent: December 22, 2020
    Assignee: OSRAM OLED GMBH
    Inventors: Andreas Rueckerl, Roland Zeisel, Simeon Katz
  • Publication number: 20200287091
    Abstract: A method of producing a radiation-emitting component includes: A) providing a dielectric layer that degrades against environmental influences; B) applying a first protective layer to the dielectric layer by an atomic layer deposition method, wherein the first protective layer includes elemental Si or in a compound; and C) applying a second protective layer to the first protective layer, the second protective layer including elemental Si, wherein a layer thickness of the first protective layer is less than or equal to 1 nm so that the first protective layer reduces or prevents a degradation of the dielectric layer.
    Type: Application
    Filed: May 24, 2017
    Publication date: September 10, 2020
    Inventor: Andreas Rückerl
  • Publication number: 20200168472
    Abstract: The invention relates to a method for structuring a nitride layer (2), comprising the following steps: A) providing a nitride layer (2) formed with silicon nitride of a first type, B) defining regions (40) of said nitride layer (2) to be transformed, and C) inserting the nitride layer (2) into a transformation chamber for the duration of a transformation period, said transformation period being selected such that—at least 80% of the nitride layer (2) regions (40) to be transformed are transformed into oxide regions (41) formed with silicon oxide, and—remaining nitride layer (2) regions (21) remain at least 80% untransformed.
    Type: Application
    Filed: December 13, 2019
    Publication date: May 28, 2020
    Inventors: Andreas RUECKERL, Roland ZEISEL, Simeon KATZ
  • Patent number: 10566210
    Abstract: The invention relates to a method for structuring a nitride layer (2), comprising the following steps: A) providing a nitride layer (2) formed with silicon nitride of a first type, B) defining regions (40) of said nitride layer (2) to be transformed, and C) inserting the nitride layer (2) into a transformation chamber for the duration of a transformation period, said transformation period being selected such that—at least 80% of the nitride layer (2) regions (40) to be transformed are transformed into oxide regions (41) formed with silicon oxide, and—remaining nitride layer (2) regions (21) remain at least 80% untransformed.
    Type: Grant
    Filed: February 19, 2016
    Date of Patent: February 18, 2020
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Andreas Rueckerl, Roland Zeisel, Simeon Katz
  • Patent number: 10465284
    Abstract: A method for producing an apparatus, an apparatus and an optoelectronic component are disclosed. In an embodiment the method includes providing a carrier, depositing an amorphous ALD layer on the carrier using an ALD method and recrystallizing the amorphous ALD layer into a crystalline layer.
    Type: Grant
    Filed: September 29, 2016
    Date of Patent: November 5, 2019
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventor: Andreas Rückerl
  • Patent number: 10193024
    Abstract: An optoelectronic semiconductor chip includes an active region arranged between a first semiconductor layer and a second semiconductor layer and generates or receives electromagnetic radiation, the first semiconductor layer electrically conductively connects to a first contact, the first contact is formed on a front side of the chip next to the active region, the second semiconductor layer electrically conductively connects to a second contact, the second contact is arranged on the front side of the chip next to the active region, and an electrically insulating separating layer that electrically insulates a rear side of the chip from the active region of the semiconductor chip, and an electrically insulating separating layer includes at least one first separating layer having at least one atomic layer or at least one molecular layer and is deposited by atomic layer deposition or molecular layer deposition.
    Type: Grant
    Filed: September 26, 2016
    Date of Patent: January 29, 2019
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Rainer Hartmann, Martin Mandl, Simeon Katz, Andreas Rückerl
  • Publication number: 20190010607
    Abstract: A method for producing an apparatus, an apparatus and an optoelectronic component are disclosed. In an embodiment the method includes providing a carrier, depositing an amorphous ALD layer on the carrier using an ALD method and recrystallizing the amorphous ALD layer into a crystalline layer.
    Type: Application
    Filed: September 29, 2016
    Publication date: January 10, 2019
    Inventor: Andreas Rückerl
  • Publication number: 20180254384
    Abstract: An optoelectronic semiconductor chip includes an active region arranged between a first semiconductor layer and a second semiconductor layer and generates or receives electromagnetic radiation, the first semiconductor layer electrically conductively connects to a first contact, the first contact is formed on a front side of the chip next to the active region, the second semiconductor layer electrically conductively connects to a second contact, the second contact is arranged on the front side of the chip next to the active region, and an electrically insulating separating layer that electrically insulates a rear side of the chip from the active region of the semiconductor chip, and an electrically insulating separating layer includes at least one first separating layer having at least one atomic layer or at least one molecular layer and is deposited by atomic layer deposition or molecular layer deposition.
    Type: Application
    Filed: September 26, 2016
    Publication date: September 6, 2018
    Inventors: Rainer Hartmann, Martin Mandl, Simeon Katz, Andreas Rückerl
  • Publication number: 20180040485
    Abstract: The invention relates to a method for structuring a nitride layer (2), comprising the following steps: A) providing a nitride layer (2) formed with silicon nitride of a first type, B) defining regions (40) of said nitride layer (2) to be transformed, and C) inserting the nitride layer (2) into a transformation chamber for the duration of a transformation period, said transformation period being selected such that—at least 80% of the nitride layer (2) regions (40) to be transformed are transformed into oxide regions (41) formed with silicon oxide, and—remaining nitride layer (2) regions (21) remain at least 80% untransformed.
    Type: Application
    Filed: February 19, 2016
    Publication date: February 8, 2018
    Inventors: Andreas RUECKERL, Roland ZEISEL, Simeon KATZ