Patents by Inventor Andreas Reiner

Andreas Reiner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11791485
    Abstract: A method of examining a fuel cell by means of a cyclic voltammetry analysis, wherein the cyclic voltammetry analysis is used to ascertain a gas composition in the fuel cell. The fuel cell has a first gas space for a first reactant and a second gas space for a second reactant, where no reactant is supplied at least to one of the two gas spaces, especially to either gas space, during the cyclic voltammetry analysis. The cyclic voltammetry analysis is used to ascertain a concentration of hydrogen in the gas spaces.
    Type: Grant
    Filed: April 17, 2020
    Date of Patent: October 17, 2023
    Assignee: Siemens Energy Global GmbH & Co. KG
    Inventors: Michael Braunecker, Andreas Reiner
  • Publication number: 20220263107
    Abstract: A method of examining a fuel cell by means of a cyclic voltammetry analysis, wherein the cyclic voltammetry analysis is used to ascertain a gas composition in the fuel cell. The fuel cell has a first gas space for a first reactant and a second gas space for a second reactant, where no reactant is supplied at least to one of the two gas spaces, especially to either gas space, during the cyclic voltammetry analysis. The cyclic voltammetry analysis is used to ascertain a concentration of hydrogen in the gas spaces.
    Type: Application
    Filed: April 17, 2020
    Publication date: August 18, 2022
    Applicant: Siemens Energy Global GmbH & Co. KG
    Inventors: Michael Braunecker, Andreas Reiner
  • Patent number: 10815649
    Abstract: A method for cooling a fluid from an electrolysis unit and extracting water from ambient air comprising: conducting moist air having a first molar amount of water and raw water into an evaporator unit in a counterflow at a temperature at or below the boiling temperature of the water; evaporating pure water from the raw water into the moist air and cooling the raw water; conducting the cooled raw water into a heat exchanger thereby cooling the fluid stream of the electrolysis unit; conducting the moist air and the pure water into a water extraction unit; separating a second molar amount of the pure water off from the moist air in the water extraction unit, wherein a third molar amount of water remaining in the air is less than the first; conducting the preheated raw water back to the evaporator; and conducting the cooled fluid back into the electrolysis unit.
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: October 27, 2020
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Marc Hanebuth, Andreas Reiner, Markus Ungerer, Knut Siegert
  • Publication number: 20190352887
    Abstract: A method for cooling a fluid from an electrolysis unit and extracting water from ambient air comprising: conducting moist air having a first molar amount of water and raw water into an evaporator unit in a counterflow at a temperature at or below the boiling temperature of the water; evaporating pure water from the raw water into the moist air and cooling the raw water; conducting the cooled raw water into a heat exchanger thereby cooling the fluid stream of the electrolysis unit; conducting the moist air and the pure water into a water extraction unit; separating a second molar amount of the pure water off from the moist air in the water extraction unit, wherein a third molar amount of water remaining in the air is less than the first; conducting the preheated raw water back to the evaporator; and conducting the cooled fluid back into the electrolysis unit.
    Type: Application
    Filed: December 21, 2017
    Publication date: November 21, 2019
    Applicant: Siemens Aktiengesellschaft
    Inventors: Marc Hanebuth, Andreas Reiner, Markus Ungerer, Knut Siegert
  • Patent number: 9365020
    Abstract: A method for the dry production of a membrane-electrode unit includes assembling a layered configuration including a centrally positioned membrane produced by extrusion and pre-dried at a temperature between 80° C. and 100° C. for 15 min to 30 min, a substrate-electrode unit on each side of the membrane having an electrode layer applied to a substrate, an optional frame around each substrate-electrode unit for fixing the substrate-electrode unit, and two separating films on outer sides. The configuration is pressed together between two laminating rollers so that a pressure connection is produced at least between the membrane and the electrode layers. A short production time is achieved because it is not necessary to keep the membrane moist at high temperatures under pressure. A membrane electrode unit and a roller configuration are also provided.
    Type: Grant
    Filed: August 16, 2012
    Date of Patent: June 14, 2016
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Armin Datz, Klaus Dennerlein, Carola Kuehn, Andreas Reiner, Werner Straub
  • Publication number: 20150136305
    Abstract: A device is proved for measuring surfaces of joint locations of at least two joint parts to be connected, e.g., for connection thereof. The device comprises an application mechanism for applying an application agent to the joint locations, at least one measurement mechanism for measuring the surfaces of the joint locations, and a movement mechanism for moving the measurement mechanism along the joint locations. At least one application parameter is determined depending on the surfaces measured, whereby a surface-dependent application process can be achieved.
    Type: Application
    Filed: May 3, 2013
    Publication date: May 21, 2015
    Inventors: Marc Ullmann, Lothar Rademacher, Andreas Reiner, Alexander Meissner
  • Publication number: 20140374248
    Abstract: A method for the dry production of a membrane-electrode unit includes assembling a layered configuration including a centrally positioned membrane produced by extrusion and pre-dried at a temperature between 80° C. and 100° C. for 15 min to 30 min, a substrate-electrode unit on each side of the membrane having an electrode layer applied to a substrate, an optional frame around each substrate-electrode unit for fixing the substrate-electrode unit, and two separating films on outer sides. The configuration is pressed together between two laminating rollers so that a pressure connection is produced at least between the membrane and the electrode layers. A short production time is achieved because it is not necessary to keep the membrane moist at high temperatures under pressure. A membrane electrode unit and a roller configuration are also provided.
    Type: Application
    Filed: August 16, 2012
    Publication date: December 25, 2014
    Applicant: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Armin Datz, Klaus Dennerlein, Carola Kuehn, Andreas Reiner, Werner Straub
  • Patent number: 5622773
    Abstract: Two-stage process for plasma treatment of antiballistically effective materials such as aromatic polyamides. The first stage includes a plasma treatment with at least 50% inorganic gas or a mixture of inorganic gases, and the second phase includes a plasma treatment with a hydrophobically acting organic gas or mixtures of such gases from the group of saturated hydrocarbons, unsaturated hydrocarbons, saturated fluorocarbons, unsaturated fluorocarbons, siloxanes, or vinyl compounds. In the second stage, a mixture of one or more inorganic gases with one or more hydrophobically acting organic gases can also be used. The process improves antiballistic effectiveness.
    Type: Grant
    Filed: April 6, 1995
    Date of Patent: April 22, 1997
    Assignee: Akzo Nobel NV
    Inventors: Andreas Reiner, Dieter H. P. Schuster, Achim G. Fels
  • Patent number: 4871778
    Abstract: The invention relates to a process for the production of a permselective flexible anion exchange membrane by application of a solution of a polymer containing polyvinylpyridine and/or a derivative thereof as anion exchanger to a carrier material and evaporation of the solvent. According to the invention, a solution of a copolymer of vinylpyridine and/or a derivative thereof and of a monomer, which does not form fixed ions either during the cross-linking reaction or in the electrolyte, or of a mixture of such monomers is applied to the carrier material, the film is subjected while moist to quaternization and the membrane formed is optionally removed from the carrier material. In preferred embodiments of the invention, the solution of the copolymer of vinylpyridine and the monomer additionally contains polyvinylbenzyl halide or a copolymer of vinylbenzyl halide and a monomer.
    Type: Grant
    Filed: July 30, 1987
    Date of Patent: October 3, 1989
    Assignee: Frauhofer-Gesellschaft zur Foderung der angewandten Forschung e.V.
    Inventor: Andreas Reiner