Patents by Inventor Andreas Trojer

Andreas Trojer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9428368
    Abstract: The invention relates to a device (2) for driving a handrail (6) for an escalator (40) or for driving a handrail (6) for a moving walkway, the device comprising a drive belt (1) guided along a contact zone (10) and deflected on a deflection roller (7) after passing through the contact zone (10). The handrail (6) can be guided resting against the drive belt (1) along the entire contact zone (10) and can be driven by the drive belt (1) by means of friction between drive belt (1) and handrail (6). The device (2) comprises a deflection element (16), which deflection element (16) ensures that a lift-off point (18) of the handrail (6) from the drive belt (1) delimiting the contact zone (10) is arranged upstream of the deflection region of the drive belt (1) on the deflection roller (7). According to the invention, an escalator (40) or a moving walkway can be modernized with such a device (2).
    Type: Grant
    Filed: December 6, 2013
    Date of Patent: August 30, 2016
    Assignee: INVENTio AG
    Inventors: Andreas Trojer, Georg Adamcik, Michael Matheisl, Thomas Novacek
  • Patent number: 9283612
    Abstract: A clinching tool (20) for producing a load-bearing, supporting or stable connection of a first metal workpiece (11) with a second metal workpiece (12). The clinching tool (20) comprises a die tool (20) and a counter-tool (30) which together form and join, by local plastic reshaping or deformation of the metal workpieces (11, 12), a clinch connection (13) which connects or permanently joins the first metal workpiece (11) and the second metal workpiece (12). The die tool (20) comprises a die having a flank (25) arranged concentrically with respect to the rotational axis (24). The flank (25) has a front end surface (23) perpendicular to the rotational axis (24). The flank (25) is conically shaped at least in the lower transition region (21) to the front end surface (23) and has a flank angle (W, W1, W2) smaller than or equal to 10 degrees, preferably smaller than or equal to 5 degrees.
    Type: Grant
    Filed: August 12, 2009
    Date of Patent: March 15, 2016
    Assignee: Inventio AG
    Inventors: Andreas Trojer, Michael Matheisl, Thomas Illedits, Thomas Novacek, Markus Israel, Reinhard Mauermann
  • Publication number: 20150298942
    Abstract: The invention relates to a device (2) for driving a handrail (6) for an escalator (40) or for driving a handrail (6) for a moving walkway, the device comprising a drive belt (1) guided along a contact zone (10) and deflected on a deflection roller (7) after passing through the contact zone (10). The handrail (6) can be guided resting against the drive belt (1) along the entire contact zone (10) and can be driven by the drive belt (1) by means of friction between drive belt (1) and handrail (6). The device (2) comprises a deflection element (16), which deflection element (16) ensures that a lift-off point (18) of the handrail (6) from the drive belt (1) delimiting the contact zone (10) is arranged upstream of the deflection region of the drive belt (1) on the deflection roller (7). According to the invention, an escalator (40) or a moving walkway can be modernized with such a device (2).
    Type: Application
    Filed: December 6, 2013
    Publication date: October 22, 2015
    Inventors: Andreas TROJER, Georg ADAMCIK, Michael MATHEISL, Thomas NOVACEK
  • Patent number: 8727095
    Abstract: A handrail with handrail elements is moved past a sensor support with at least one sensor. Each handrail element has, for example, a collar, which extends into the adjacent handrail element. The handrail elements, which are pivotably fastened to a second transport chain, can move relative to the adjacent handrail elements without a gap then arising between two adjacent handrail elements. Merely a segment groove with such a small depth that fingers are not caught arises between two adjacent handrail elements. The sensor can recognize each segment groove as well as defective handrail elements. Operating magnitudes such as speed, acceleration and deceleration of the handrail are ascertainable and/or risk-laden operating states are recognizable by means of the sensor signal.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: May 20, 2014
    Assignee: Inventio AG
    Inventors: Andreas Trojer, Dirk Blondiau, Michael Matheisl, Paul Sailer
  • Patent number: 8555479
    Abstract: A method of producing a load-bearing steel construction connection, wherein a clinch connection (13) connecting a first metal workpiece (6.1, 6.2) with a second metal workpiece (6.3, 6.4) is formed by local deformation by means of a die tool (20) and a counter-tool (30). In that case initially the first metal workpiece (6.1, 6.2) and the second metal workpiece (6.3, 6.4) are placed one on the other on a processing surface of the counter-tool and aligned. The die of the die tool is then advanced and sunk into the two metal workpieces (6.1, 6.2; 6.3, 6.4) placed one on the other until the clinch connection (13) has been formed by plastic deformation. The first metal workpiece (6.1, 6.2) has a first workpiece thickness (t1) and the second metal workpiece (6.3, 6.4) has a second workpiece thickness (t2), which together give a total workpiece thickness (tt) which is thicker than 8 millimeters.
    Type: Grant
    Filed: August 12, 2009
    Date of Patent: October 15, 2013
    Assignee: Inventio AG
    Inventors: Andreas Trojer, David Krampl, Michael Matheisl, Richard Schütz, Thomas Novacek, Markus Israel, Reinhard Mauermann
  • Publication number: 20130020174
    Abstract: A handrail with handrail elements is moved past a sensor support with at least one sensor. Each handrail element has, for example, a collar, which extends into the adjacent handrail element. The handrail elements, which are pivotably fastened to a second transport chain, can move relative to the adjacent handrail elements without a gap then arising between two adjacent handrail elements. Merely a segment groove with such a small depth that fingers are not caught arises between two adjacent handrail elements. The sensor can recognize each segment groove as well as defective handrail elements. Operating magnitudes such as speed, acceleration and deceleration of the handrail are ascertainable and/or risk-laden operating states are recognizable by means of the sensor signal.
    Type: Application
    Filed: December 21, 2011
    Publication date: January 24, 2013
    Inventors: Andreas TROJER, Dirk Blondiau, Michael Matheisl, Paul Sailer
  • Patent number: 8220612
    Abstract: The step (1) comprises cheeks (5) which are manufactured from deep drawing sheet metal, and a tread element (22) and a deep drawn seating element (24). The arc (BO1) of the seating element (24) follows a first radius (R1) in the upper region and a second radius (R2) in the lower region, wherein the second radius (R2) is somewhat smaller than the first radius (R1). The sheet (BO1) of the seating element (24) merges smoothly at the line (ÜR) from one radius into the other radius. By way of the two radii (R1, R2), the size of the step gap between the tread element (22) and the seating element (24) of the adjacent step is independent of the position of the step gap; the step gap always remains very small, for example smaller than 2.8 mm. As a result, the risk of clothing items, sharp objects, shoes, children's fingers and so on getting jammed is reduced considerably.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: July 17, 2012
    Assignee: Inventio AG
    Inventors: Michael Matheisl, Thomas Novacek, Kurt Streibig, Andreas Trojer
  • Publication number: 20100282570
    Abstract: The step (1) comprises cheeks (5) which are manufactured from deep drawing sheet metal, and a tread element (22) and a deep drawn seating element (24). The arc (BO1) of the seating element (24) follows a first radius (R1) in the upper region and a second radius (R2) in the lower region, wherein the second radius (R2) is somewhat smaller than the first radius (R1). The sheet (BO1) of the seating element (24) merges smoothly at the line (ÜR) from one radius into the other radius. By way of the two radii (R1, R2), the size of the step gap between the tread element (22) and the seating element (24) of the adjacent step is independent of the position of the step gap; the step gap always remains very small, for example smaller than 2.8 mm. As a result, the risk of clothing items, sharp objects, shoes, children's fingers and so on getting jammed is reduced considerably.
    Type: Application
    Filed: September 26, 2008
    Publication date: November 11, 2010
    Inventors: Michael Matheisl, Thomas Novacek, Kurt Streibig, Andreas Trojer
  • Publication number: 20100018278
    Abstract: A clinching tool (20) for producing a load-bearing, supporting or stable connection of a first metal workpiece (11) with a second metal workpiece (12). The clinching tool (20) comprises a die tool (20) and a counter-tool (30) which together form and join, by local plastic reshaping or deformation of the metal workpieces (11, 12), a clinch connection (13) which connects or permanently joins the first metal workpiece (11) and the second metal workpiece (12). The die tool (20) comprises a die having a flank (25) arranged concentrically with respect to the rotational axis (24). The flank (25) has a front end surface (23) perpendicular to the rotational axis (24). The flank (25) is conically shaped at least in the lower transition region (21) to the front end surface (23) and has a flank angle (W, W1, W2) smaller than or equal to 10 degrees, preferably smaller than or equal to 5 degrees.
    Type: Application
    Filed: August 12, 2009
    Publication date: January 28, 2010
    Inventors: Andreas Trojer, Michael Matheisl, Thomas Illedits, Thomas Novacek
  • Publication number: 20100018148
    Abstract: Method of producing a load-bearing steel construction connection, wherein a clinch connection (13) connecting a first metal workpiece (6.1, 6.2) with a second metal workpiece (6.3, 6.4) is formed by local deformation by means of a die tool (20) and a counter-tool (30). In that case initially the first metal workpiece (6.1, 6.2) and the second metal workpiece (6.3, 6.4) are placed one on the other on a processing surface of the counter-tool and aligned. The die of the die tool is then advanced and sunk into the two metal workpieces (6.1, 6.2; 6.3, 6.4) placed one on the other until the clinch connection (13) has been formed by plastic deformation. The first metal workpiece (6.1, 6.2) has a first workpiece thickness (t1) and the second metal workpiece (6.3, 6.4) has a second workpiece thickness (t2), which together give a total workpiece thickness (tt) which is thicker than 8 millimetres.
    Type: Application
    Filed: August 12, 2009
    Publication date: January 28, 2010
    Inventors: Andreas Trojer, David Krampl, Michael Matheisl, Richard Schütz, Thomas Novacek