Patents by Inventor Andreas Tuennermann

Andreas Tuennermann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110100066
    Abstract: A device for joining and tapering optical components such as fibers includes a retaining device for holding optical components in a processing site, a laser radiation source for emitting a laser beam and beam forming elements for guiding the laser beam to the processing site. At least a first beam forming element is inserted into the beam path of the laser radiation source for producing a radiation having the form of an annulus and a second beam forming element is provided for specifying the angle of incidence of the radiation having the form of an annulus onto the optical components at the processing site.
    Type: Application
    Filed: May 19, 2009
    Publication date: May 5, 2011
    Inventors: Steffen Böhme, Thomas Peschel, Ramona Eberhardt, Andreas Tünnermann, Jens Limpert
  • Publication number: 20100304151
    Abstract: The present invention relates to a method for laser-assisted bonding of substrates, in which these are connected together firstly frictionally by pressing together and subsequently strengthening of the connection between the substrates is effected by activation in regions which is induced by laser irradiation. The invention likewise relates to substrates produced accordingly.
    Type: Application
    Filed: February 21, 2008
    Publication date: December 2, 2010
    Applicant: Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V.
    Inventors: Andreas Tuennermann, Ramona Eberhardt, Gerhard Kalkowski, Stefan Nolte
  • Publication number: 20100288422
    Abstract: The present invention relates to a method for joining two or more components made of glass, ceramic, and/or glass ceramic, using a soluble glass joining solution having sodium, potassium, and/or lithium ions and/or a silica sol, the joining solution being applied to joint surfaces between the components to be joined and solidified at mild temperatures, the method being either characterized in that the joining solution comprises an additive selected among boric acid, boron compounds from which boric acid can result by hydrolysis, aluminum acetates, aluminum silicate/NH3/H2O titanium compounds forming titanium hydroxy cations, water-soluble zinc compounds, water-soluble zircon compounds, and water-soluble yttrium compounds, wherein said additive is added in an amount that reduces the pH value of the underlying soluble glass, and/or characterized in that, after the joining solution is applied and the components to be joined are brought together and fixed, the joined components are dried by removing water at room
    Type: Application
    Filed: December 12, 2008
    Publication date: November 18, 2010
    Inventors: Manfred Krauss, Gudrun Leopoldsberger, Gerhard Kalkowski, Ramona Eberhardt, Andreas Tuennermann, Charlotte Jahnke, Simone Fabian
  • Publication number: 20100133639
    Abstract: A semiconductor component that includes a photosensitive doped semiconductor layer, in which electrical charge carriers are released during absorption of electromagnetic radiation is disclosed. The photosensitive semiconductor layer has a structured interface and at least one layer which generates an electric field for separating the released charge carriers disposed downstream of the structured interface. The electric field extends over the structured interface. The photosensitive semiconductor component is distinguished by a high efficiency of the charge carrier separation, in particular, for generating an electric current.
    Type: Application
    Filed: November 24, 2009
    Publication date: June 3, 2010
    Inventors: Kevin Fuechsel, Andreas Tuennermann, Ernst-Bernhard Kley
  • Patent number: 6697394
    Abstract: A directly modulatable laser comprising an active medium inside a laser cavity formed by a resonator mirror and an out-coupling mirror, and a pump light source exciting the active medium. It is characterized in that the active medium generates radiation of two wavelengths (&lgr;1 and &lgr;2) and the resonator mirror is constructed as a controllable reflector by which the reflectivity is controllable for each of the two wavelengths (&lgr;1 and &lgr;2) and the controllable reflector is connected with a control unit, wherein the reflection factor is controlled in such a way that the inversion density of the electrons which is generated in the active medium is constant and the light output of one of the wavelengths ((&lgr;1) is controllable between a minimum value and a maximum value according to an applied control signal, wherein the control of the two wavelengths ((&lgr;1 and &lgr;2) is carried out in push-pull.
    Type: Grant
    Filed: February 9, 2001
    Date of Patent: February 24, 2004
    Assignee: Jenoptik LDT GmbH
    Inventors: Andreas Tuennermann, Holger Zellmer, Jens-Peter Ruske
  • Publication number: 20020018287
    Abstract: A fiber-optic amplifier comprising a laser source which emits signal radiation in a narrow band on one or more wavelengths in a first end of an amplifier fiber, and amplified signal radiation can be coupled out at a second end of the amplifier fiber. The amplifier fiber is a double-core fiber with a pump core and a laser core and the latter is end pumped or side pumped. The amplifier fiber is a multimode double-core fiber at which or within which is arranged, in the area of its first end, an element for transverse mode selection which suppresses modes higher than the fundamental mode.
    Type: Application
    Filed: February 27, 2001
    Publication date: February 14, 2002
    Applicant: SCHEIDER Laser Technologies AG
    Inventors: Holger Zellmer, Andreas Tuennermann
  • Publication number: 20010017868
    Abstract: An arrangement which generates red, green and blue laser radiation comprise a laser radiation source whose first beam (&lgr;l) is split in the infrared wavelength range, wherein the first part of this beam is frequency-doubled and green light (&lgr;G) results and another part is used to generate light of the primary colors red (&lgr;R) and blue (&lgr;B). Another part of the first beam (&lgr;l) is fed to a wavelength converter which generates another beam (&lgr;2, &lgr;4) in the infrared wavelength range which has a greater wavelength than the first beam (&lgr;l), further, the colors red (&lgr;R) and blue (&lgr;B) result from the further beam (&lgr;2, &lgr;4) or from a part thereof by another nonlinear process by sum frequency mixing or by frequency doubling or by sum frequency mixing and frequency doubling.
    Type: Application
    Filed: February 23, 2001
    Publication date: August 30, 2001
    Applicant: SCHNEIDER Laser technologies AG;
    Inventors: Juergen Kraenert, Thomas Gabler, Holger Zellmer, Andreas Tuennermann
  • Publication number: 20010017867
    Abstract: A fiber amplifier is disclosed comprising a signal source (oscillator), an amplifier fiber and a pump laser. The amplifier fiber is arranged between two polarizers and a portion of the beam that is depolarized in the amplifier fiber is coupled out at the amplifier output, returned to the amplifier input, coupled into the amplifier fiber with the radiation from the signal source and amplified again, and another portion, as linearly polarized beam, exits the fiber amplifier as useful beam.
    Type: Application
    Filed: February 27, 2001
    Publication date: August 30, 2001
    Applicant: SCHNEIDER Laser Technologies AG
    Inventors: Juergen Kraenert, Thomas Gabler, Holger Zellmer, Andreas Tuennermann
  • Publication number: 20010014107
    Abstract: A directly modulatable laser comprising an active medium inside a laser cavity formed by a resonator mirror and an out-coupling mirror, and a pump light source exciting the active medium. It is characterized in that the active medium generates radiation of two wavelengths (&lgr;1 and &lgr;2) and the resonator mirror is constructed as a controllable reflector by which the reflectivity is controllable for each of the two wavelengths (&lgr;1 and &lgr;2) and the controllable reflector is connected with a control unit, wherein the reflection factor is controlled in such a way that the inversion density of the electrons which is generated in the active medium is constant and the light output of one of the wavelengths ((&lgr;1) is controllable between a minimum value and a maximum value according to an applied control signal, wherein the control of the two wavelengths ((&lgr;1 and &lgr;2) is carried out in push-pull.
    Type: Application
    Filed: February 9, 2001
    Publication date: August 16, 2001
    Applicant: SCHNEIDER Laser Technologie AG;
    Inventors: Andreas Tuennermann, Holger Zellmer, Jens-Peter Ruske