Patents by Inventor Andreas WALDSCHIK

Andreas WALDSCHIK has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240145615
    Abstract: A sensor device includes a carrier having a via for guiding an electrical contact from a bottom surface to a top surface of the carrier. The device also includes an integrated circuit on the carrier, a sensor element, an optoelectronic component on the top surface of the carrier, and a first electrically conductive contact element on the via an electrically connected thereto. The device further includes a substantially opaque encapsulation material enclosing the sensor element, the optoelectronic component, and the first electrically conductive contact element such that a surface of the sensor element and of the optoelectronic component opposite the carrier is uncovered by the encapsulation material.
    Type: Application
    Filed: February 22, 2022
    Publication date: May 2, 2024
    Inventors: Tim BOESCKE, Maximilian ASSIG, Thomas SCHWARZ, Andreas WALDSCHIK
  • Patent number: 11662070
    Abstract: A placement device for placing optoelectronic components on electrical lines includes a holding device for holding at least one electric line extending in a longitudinal direction, and an application device for arranging optoelectronic components on the at least one electrical line.
    Type: Grant
    Filed: July 10, 2019
    Date of Patent: May 30, 2023
    Assignee: OSRAM OLED GmbH
    Inventors: Frank Singer, Ralph Bertram, Andreas Dobner, Andreas Waldschik
  • Publication number: 20230015476
    Abstract: In an embodiment a semiconductor component includes a carrier, at least one semiconductor chip arranged on the carrier, the semiconductor chip having at least one first electrical contact at a main surface of the semiconductor chip facing away from the carrier, an electrically insulating layer arranged on the carrier and at least one electrical connection layer led by the electrically insulating layer to the first electrical contact, wherein the electrically insulating layer includes a photopatternable material.
    Type: Application
    Filed: December 8, 2020
    Publication date: January 19, 2023
    Inventors: Stefan Rass, Bjoern Hoxhold, Andreas Waldschik, Andreas Dobner, Hermann Nuss
  • Publication number: 20230006118
    Abstract: In an embodiment an optoelectronic device includes a carrier and a plurality of semiconductor chips fastened on the carrier by a connector, wherein each semiconductor chip has at least one contact pad on a main surface facing away from the carrier, wherein each contact pad is contacted electrically by an interconnecting track, and wherein the interconnecting track is guided over an edge of the main surface of the semiconductor chip onto the carrier.
    Type: Application
    Filed: November 30, 2020
    Publication date: January 5, 2023
    Inventors: Hermann Nuss, Andreas Dobner, Bjoern Hoxhold, Andreas Waldschik, Erwin Beer, Bernd Boehm, Ludwig Hofbauer, Stefan Merl, Stefan Rass, Matthias Stark
  • Publication number: 20220352135
    Abstract: An optoelectronic component includes at least one optoelectronic semiconductor chip with a main surface on which two electrical contacts are arranged. The optoelectronic component also includes a control chip for controlling the optoelectronic semiconductor chip with a plurality of electrical connection pads. The optoelectronic component further includes a housing with a housing body. The optoelectronic semiconductor chip is arranged with a mounting surface, which extends transversely to the main surface, in a first recess of the housing body. A side surface of the first recess forms an obtuse tilt angle with a bottom surface of the first recess. At least one of the electrical contacts of the optoelectronic semiconductor chip is electrically conductively connected to an electrical connection pad of the control chip via a conductor path. The conductor path is arranged at least in places on the side surface of the first recess.
    Type: Application
    Filed: October 8, 2020
    Publication date: November 3, 2022
    Inventors: Andreas DOBNER, Andreas WALDSCHIK, Matthias GOLDBACH
  • Publication number: 20220238497
    Abstract: An optoelectronic device, in particular an at least semi-transparent pane for example for a vehicle, comprises: a cover layer, a carrier layer, an intermediate layer between the cover layer and the carrier layer, wherein at least one and preferably a plurality of optoelectronic light sources, in particular ?LEDS, is arranged on at least one surface of the intermediate layer and/or is at least partially embedded in the intermediate layer, wherein the intermediate layer is adapted such that light emitted by the optoelectronic light sources at least partially spreads in and along the intermediate layer and exits the intermediate layer within and/or at a pre-set distance to the respective optoelectronic light source in a direction through the cover layer and/or through the carrier layer.
    Type: Application
    Filed: October 29, 2020
    Publication date: July 28, 2022
    Inventors: Michael BRANDL, Andreas DOBNER, Matthias GOLDBACH, Sebastian WITTMANN, Uli HILLER, Markus KLEIN, Thomas SCHWARZ, Andreas WALDSCHIK, Michael WITTMANN, Matthias BRUCKSCHLOEGL, Stefan GROETSCH, Rainer HUBER, Peter BRICK, Ludwig HOFBAUER
  • Publication number: 20220167334
    Abstract: An optoelectronic device comprises a plurality of optoelectronic light sources being arranged on a first layer, in particular an intermediate layer being arranged between a cover layer and a carrier layer. The first layer comprises or consists of an at least partially transparent material and each optoelectronic light source of the plurality of optoelectronic light sources comprises an individual light converter for converting light emitted by the associated light source into converted light. The light converter of each optoelectronic light source is arranged on the first layer and/or the associated optoelectronic light source.
    Type: Application
    Filed: December 3, 2021
    Publication date: May 26, 2022
    Inventors: Michael Brandl, Andreas Dobner, Matthias Goldbach, Sebastian Wittmann, Uli Hiller, Markus Klein, Thomas Schwarz, Andreas Waldschik, Michael Wittmann, Matthias Bruckschloegl, Stefan Groetsch, Rainer Huber, Peter Brick, Ludwig Hofbauer
  • Publication number: 20220149019
    Abstract: An optoelectronic device comprises a layer stack, which includes a carrier layer, a cover layer, and a first layer. The first layer is in particular an intermediate layer, arranged between the cover layer and the carrier layer. At least one electronic or optoelectronic element, in particular an optoelectronic light source, is arranged on the first layer and at least one layer of the layer stack and preferably all layers of the layer stack are at least partially transparent. The layer stack comprises at least one layer which comprises particles with a high thermal conductivity and/or at least one thermally conductive layer which is arranged between two adjacent layers of the layer stack.
    Type: Application
    Filed: December 3, 2021
    Publication date: May 12, 2022
    Inventors: Michael Brandl, Andreas Dobner, Matthias Goldbach, Sebastian Wittmann, Uli Hiller, Markus Klein, Thomas Schwarz, Andreas Waldschik, Michael Wittmann, Matthias Bruckschloegl, Stefan Groetsch, Rainer Huber, Peter Brick, Ludwig Hofbauer
  • Publication number: 20210285607
    Abstract: A placement device for placing optoelectronic components on electrical lines includes a holding device for holding at least one electric line extending in a longitudinal direction, and an application device for arranging optoelectronic components on the at least one electrical line.
    Type: Application
    Filed: July 10, 2019
    Publication date: September 16, 2021
    Inventors: Frank SINGER, Ralph BERTRAM, Andreas DOBNER, Andreas WALDSCHIK
  • Patent number: 10205071
    Abstract: A method of producing optoelectronic semiconductor components includes providing a carrier with a carrier underside and a carrier top. The carrier has a metallic core material and at least on the carrier top a metal layer. A dielectric mirror is applied to the core material. At least two holes are formed through the carrier. A ceramic layer with a thickness of at most 150 ?m at least on the carrier underside and in the holes is produced. The ceramic layer includes the core material as a component. Metallic contact layers are applied to at least subregions of the ceramic layer on the carrier underside and in the holes so that the carrier top electrically connects to the carrier underside through the holes. At least one radiation-emitting semiconductor chip is applied to the carrier top and the semiconductor chip is electronically bonded to the contact layers.
    Type: Grant
    Filed: May 19, 2016
    Date of Patent: February 12, 2019
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Thomas Schwarz, Andreas Biebersdorf, Dirk Becker, Bernd Barchmann, Björn Hoxhold, Philipp Schlosser, Andreas Waldschik
  • Publication number: 20180145234
    Abstract: A method of producing optoelectronic semiconductor components includes providing a carrier with a carrier underside and a carrier top, wherein the carrier has a metallic core material and at least on the carrier top a metal layer and following this a dielectric mirror are applied to the core material, forming at least two holes through the carrier, producing a ceramic layer with a thickness of at most 150 ?m at least on the carrier underside and in the holes, wherein the ceramic layer includes the core material as a component, applying metallic contact layers to at least subregions of the ceramic layer on the carrier underside and in the holes so that the carrier top electrically connects to the carrier underside through the holes, and applying at least one radiation-emitting semiconductor chip to the carrier top and electrical bonding of the semiconductor chip to the contact layers.
    Type: Application
    Filed: May 19, 2016
    Publication date: May 24, 2018
    Inventors: Thomas Schwarz, Andreas Biebersdorf, Dirk Becker, Bernd Barchmann, Björn Hoxhold, Philipp Schlosser, Andreas Waldschik
  • Patent number: 9966516
    Abstract: A method for producing a lighting device is provided. According to the method, a plurality of semiconductor emitters arranged alongside one another are embedded in a light-transmissive filling compound apart from a side having their electrical connections, trenches are introduced into the light-transmissive filling compound at the side having the electrical connections between at least two semiconductor emitters, the side of the light-transmissive filling compound having the electrical connections, including the electrical connections, is covered with a dielectric material, electrical lines are led through the dielectric material to the electrical connections, and at least some of the trenches are severed.
    Type: Grant
    Filed: July 20, 2015
    Date of Patent: May 8, 2018
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Philipp Schlosser, Andreas Waldschik
  • Publication number: 20170244011
    Abstract: A method for producing a lighting device is provided. According to the method, a plurality of semiconductor emitters arranged alongside one another are embedded in a light-transmissive filling compound apart from a side having their electrical connections, trenches are introduced into the light-transmissive filling compound at the side having the electrical connections between at least two semiconductor emitters, the side of the light-transmissive filling compound having the electrical connections, including the electrical connections, is covered with a dielectric material, electrical lines are led through the dielectric material to the electrical connections, and at least some of the trenches are severed.
    Type: Application
    Filed: July 20, 2015
    Publication date: August 24, 2017
    Inventors: Philipp SCHLOSSER, Andreas WALDSCHIK