Patents by Inventor Andreas WENDEL

Andreas WENDEL has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11321573
    Abstract: The present disclosure is directed to an autonomous vehicle having a vehicle control system. The vehicle control system includes an image processing system. The image processing system receives an image that includes a plurality of image portions. The image processing system also calculates a score for each image portion. The score indicates a level of confidence that a given image portion represents an illuminated component of a traffic light. The image processing system further identifies one or more candidate portions from among the plurality of image portions. Additionally, the image processing system determines that a particular candidate portion represents an illuminated component of a traffic light using a classifier. Further, the image processing system provides instructions to control the autonomous vehicle based on the particular candidate portion representing an illuminated component of a traffic light.
    Type: Grant
    Filed: May 23, 2019
    Date of Patent: May 3, 2022
    Assignee: Waymo LLC
    Inventors: Andreas Wendel, David Ian Franklin Ferguson
  • Patent number: 11279346
    Abstract: Aspects of the disclosure relate to determining whether a vehicle should continue through an intersection. For example, the one or more of the vehicle's computers may identify a time when the traffic signal light will turn from yellow to red. The one or more computers may also estimate a location of a vehicle at the time when the traffic signal light will turn from yellow to red. A starting point of the intersection may be identified. Based on whether the estimated location of the vehicle is at least a threshold distance past the starting point at the time when the traffic signal light will turn from yellow to red, the computers can determine whether the vehicle should continue through the intersection.
    Type: Grant
    Filed: June 21, 2019
    Date of Patent: March 22, 2022
    Assignee: Waymo LLC
    Inventors: Jens-Steffen Ralf Gutmann, Andreas Wendel, Nathaniel Fairfield, Dmitri A. Dolgov, Donald Jason Burnette
  • Publication number: 20220080990
    Abstract: The technology relates to partially redundant equipment architectures for vehicles able to operate in an autonomous driving mode. Aspects of the technology employ fallback configurations, such as two or more fallback sensor configurations that provide some minimum amount of field of view (FOV) around the vehicle. For instance, different sensor arrangements are logically associated with different operating domains of the vehicle. Fallback configurations for computing resources and/or power resources are also provided. Each fallback configuration may have different reasons for being triggered, and may result in different types of fallback modes of operation. Triggering conditions may relate, e.g., to a type of failure, fault or other reduction in component capability, the current driving mode, environmental conditions in the vicinity of vehicle or along a planned route, or other factors.
    Type: Application
    Filed: November 22, 2021
    Publication date: March 17, 2022
    Inventors: Emily Chi, Ryan Joseph Andrade, Andreas Wendel, Michael James, Christian Lauterbach, Etai Bruhis, Christopher Kennedy Ludwick, Alexander Zbrozek, Pieter Kapsenberg, Zhuyuan Liu, Daniel Rosenband
  • Publication number: 20220060616
    Abstract: Example embodiments relate to multiple operating modes to expand dynamic range. An example embodiment includes a camera system. The camera system may include a first image sensor having a first dynamic range corresponding to a first range of luminance levels in a scene. The system may also include a second image sensor having a second dynamic range corresponding to a second range of luminance levels in the scene. The camera system may further include a processor coupled to the first image sensor and the second image sensor. The processor may be configured to execute instructions to identify objects of a first type in a first image of the scene captured by the first image sensor and identify objects of a second object type in a second image of the scene captured by the second image sensor.
    Type: Application
    Filed: November 3, 2021
    Publication date: February 24, 2022
    Inventors: Andreas Wendel, Jeremy Dittmer, Brendan Hermalyn, Benjamin Ingram
  • Publication number: 20220035005
    Abstract: The technology relates to autonomous vehicles that use a perception system to detect objects and features in the vehicle's surroundings. A camera assembly having a ring-type structure is provided that gives the perception system an overall 360° field of view around the vehicle. Image sensors are arranged in camera modules around the assembly to provide a seamless panoramic field of view. One subsystem has multiple pairs of image sensors positioned to provide the overall 360° field of view, while another subsystem provides a set of image sensors generally facing toward the front of the vehicle to provide enhanced object identification. The camera assembly may be arranged in a housing located on top of the vehicle. The housing may include other sensors such as LIDAR and radar. The assembly includes a chassis and top and base plates, which may provide EMI protection from other sensors disposed in the housing.
    Type: Application
    Filed: October 18, 2021
    Publication date: February 3, 2022
    Inventors: Kimberly Geneva Toth, Brendan Hermalyn, Shane Mcguire, Felix Jose Alvarez Rivera, Jeremy Dittmer, Andreas Wendel
  • Patent number: 11227409
    Abstract: The disclosure relates to assessing operation of a camera. In one instance, a volume of space corresponding to a first vehicle in an environment of a second vehicle may be identified using sensor data generated by a LIDAR system of the second vehicle. An image captured by a camera of the second vehicle may be identified. The camera may have an overlapping field of view of the LIDAR system at a time when the sensor data was generated. An area of the image corresponding to the volume of space may be identified and processed in order to identify a vehicle light. The operation of the camera may be assessed based on the processing.
    Type: Grant
    Filed: August 20, 2018
    Date of Patent: January 18, 2022
    Assignee: Waymo LLC
    Inventors: Chen Wu, Carl Warren Craddock, Andreas Wendel
  • Patent number: 11208111
    Abstract: The technology relates to partially redundant equipment architectures for vehicles able to operate in an autonomous driving mode. Aspects of the technology employ fallback configurations, such as two or more fallback sensor configurations that provide some minimum amount of field of view (FOV) around the vehicle. For instance, different sensor arrangements are logically associated with different operating domains of the vehicle. Fallback configurations for computing resources and/or power resources are also provided. Each fallback configuration may have different reasons for being triggered, and may result in different types of fallback modes of operation. Triggering conditions may relate, e.g., to a type of failure, fault or other reduction in component capability, the current driving mode, environmental conditions in the vicinity of vehicle or along a planned route, or other factors.
    Type: Grant
    Filed: December 11, 2018
    Date of Patent: December 28, 2021
    Assignee: Waymo LLC
    Inventors: Emily Chi, Ryan Joseph Andrade, Andreas Wendel, Michael James, Christian Lauterbach, Etai Bruhis, Christopher Kennedy Ludwick, Alexander Zbrozek, Pieter Kapsenberg, Zhuyuan Liu, Daniel Rosenband
  • Patent number: 11196916
    Abstract: Example embodiments relate to multiple operating modes to expand dynamic range. An example embodiment includes a camera system. The camera system may include a first image sensor having a first dynamic range corresponding to a first range of luminance levels in a scene. The system may also include a second image sensor having a second dynamic range corresponding to a second range of luminance levels in the scene. The camera system may further include a processor coupled to the first image sensor and the second image sensor. The processor may be configured to execute instructions to identify objects of a first type in a first image of the scene captured by the first image sensor and identify objects of a second object type in a second image of the scene captured by the second image sensor.
    Type: Grant
    Filed: July 22, 2020
    Date of Patent: December 7, 2021
    Assignee: Waymo LLC
    Inventors: Andreas Wendel, Jeremy Dittmer, Brendan Hermalyn, Benjamin Ingram
  • Publication number: 20210368109
    Abstract: An optical system for a vehicle may be configured with a plurality of camera sensors. Each camera sensor may be configured to create respective image data of a respective field of view. The optical system is further configured with a plurality of image processing units coupled to the plurality of camera sensors. The image processing units are configured to compress the image data captured by the camera sensors. A computing system is configured to store the compressed image data in a memory. The computing system is further configured with a vehicle-control processor configured to control the vehicle based on the compressed image data. The optical system and the computing system can be communicatively coupled by a data bus.
    Type: Application
    Filed: August 5, 2021
    Publication date: November 25, 2021
    Inventors: Andreas Wendel, Jeremy Dittmer, Brendan Hermalyn
  • Patent number: 11181619
    Abstract: The technology relates to autonomous vehicles that use a perception system to detect objects and features in the vehicle's surroundings. A camera assembly having a ring-type structure is provided that gives the perception system an overall 360° field of view around the vehicle. Image sensors are arranged in camera modules around the assembly to provide a seamless panoramic field of view. One subsystem has multiple pairs of image sensors positioned to provide the overall 360° field of view, while another subsystem provides a set of image sensors generally facing toward the front of the vehicle to provide enhanced object identification. The camera assembly may be arranged in a housing located on top of the vehicle. The housing may include other sensors such as LIDAR and radar. The assembly includes a chassis and top and base plates, which may provide EMI protection from other sensors disposed in the housing.
    Type: Grant
    Filed: June 14, 2018
    Date of Patent: November 23, 2021
    Assignee: Waymo LLC
    Inventors: Kimberly Geneva Toth, Brendan Hermalyn, Shane Mcguire, Felix Jose Alvarez Rivera, Jeremy Dittmer, Andreas Wendel
  • Publication number: 20210343150
    Abstract: Methods and system are provided for training and using a model to determine states of lanes of interest. For instance, image data including an image and an associated label identifying at least one traffic light, a state of the at least one traffic light, and a lane controlled by the at least one traffic light are received and used to train the model such that the model is configured to, in response to receiving an image and a lane of interest included in the image, output a lane state for the lane of interest. This model is then used by a vehicle in order to determine a state of a lane of interest. This state is then used to control the vehicle in an autonomous driving mode based on the state of the lane of interest.
    Type: Application
    Filed: June 2, 2021
    Publication date: November 4, 2021
    Inventors: Maxim Krivokon, Abhijit S. Ogale, Edward Hsiao, Andreas Wendel
  • Publication number: 20210250527
    Abstract: Examples described may related to an imaging sensor used by a vehicle, including a light sensor. The light sensor comprises a plurality of cells aligned in a plurality of horizontal rows and a plurality of vertical columns. The apparatus further includes an optical system configured to provide the light sensor with a field of view of an external environment of the apparatus. Additionally, the system includes a processing unit configured to: divide the plurality of horizontal rows of the light sensor into one or more enabled rows and one or more disabled rows; obtain image data from the light sensor by sampling one or more cells in the one or more enabled rows; and store the received image data in a memory.
    Type: Application
    Filed: April 29, 2021
    Publication date: August 12, 2021
    Inventors: Andrea Wendel, Jeremy Dittmer
  • Patent number: 11056005
    Abstract: Methods and system are provided for training and using a model to determine states of lanes of interest. For instance, image data including an image and an associated label identifying at least one traffic light, a state of the at least one traffic light, and a lane controlled by the at least one traffic light are received and used to train the model such that the model is configured to, in response to receiving an image and a lane of interest included in the image, output a lane state for the lane of interest. This model is then used by a vehicle in order to determine a state of a lane of interest. This state is then used to control the vehicle in an autonomous driving mode based on the state of the lane of interest.
    Type: Grant
    Filed: October 24, 2018
    Date of Patent: July 6, 2021
    Assignee: Waymo LLC
    Inventors: Maxim Krivokon, Abhijit S. Ogale, Edward Hsiao, Andreas Wendel
  • Publication number: 20210203864
    Abstract: One example system comprises a LIDAR sensor that rotates about an axis to scan an environment of the LIDAR sensor. The system also comprises one or more cameras that detect external light originating from one or more external light sources. The one or more cameras together provide a plurality of rows of sensing elements. The rows of sensing elements are aligned with the axis of rotation of the LIDAR sensor. The system also comprises a controller that operates the one or more cameras to obtain a sequence of image pixel rows. A first image pixel row in the sequence is indicative of external light detected by a first row of sensing elements during a first exposure time period. A second image pixel row in the sequence is indicative of external light detected by a second row of sensing elements during a second exposure time period.
    Type: Application
    Filed: February 26, 2021
    Publication date: July 1, 2021
    Inventors: Blaise Gassend, Benjamin Ingram, Andreas Wendel, Mark Alexander Shand
  • Publication number: 20210131816
    Abstract: Example implementations may relate to sun-aware vehicle routing. In particular, a computing system of a vehicle may determine an expected position of the sun relative to a geographic area. Based on the expected position, the computing system may make a determination that travel of the vehicle through certain location(s) within the geographic area is expected to result in the sun being proximate to an object within a field of view of the vehicle's image capture device. Responsively, the computing system may generate a route for the vehicle in the geographic area based at least on the route avoiding travel of the vehicle through these certain location(s), and may then operate the vehicle to travel in accordance with the generated route. Ultimately, this may help reduce or prevent situations where quality of image(s) degrades due to sunlight, which may allow for use of these image(s) as basis for operating the vehicle.
    Type: Application
    Filed: January 15, 2021
    Publication date: May 6, 2021
    Inventors: Jeremy Dittmer, Andreas Wendel
  • Publication number: 20210134012
    Abstract: The present disclosure relates to a target, a method, and a system for calibrating a camera. One example embodiment includes a target. The target includes a first pattern of fiducial markers. The target also includes a second pattern of fiducial markers. The first pattern of fiducial markers is a scaled version of the second pattern of fiducial markers, such that a calibration image captured of the target simulates multiple images of a single pattern captured at multiple calibration perspectives.
    Type: Application
    Filed: January 14, 2021
    Publication date: May 6, 2021
    Inventors: Andreas Wendel, Volker Grabe, Jeremy Dittmer, Zachary Morriss
  • Patent number: 10999539
    Abstract: Examples described may related to an imaging sensor used by a vehicle, including a light sensor. The light sensor comprises a plurality of cells aligned in a plurality of horizontal rows and a plurality of vertical columns. The apparatus further includes an optical system configured to provide the light sensor with a field of view of an external environment of the apparatus. Additionally, the system includes a processing unit configured to: divide the plurality of horizontal rows of the light sensor into one or more enabled rows and one or more disabled rows; obtain image data from the light sensor by sampling one or more cells in the one or more enabled rows; and store the received image data in a memory.
    Type: Grant
    Filed: December 10, 2018
    Date of Patent: May 4, 2021
    Assignee: Waymo LLC
    Inventors: Andreas Wendel, Jeremy Dittmer
  • Patent number: 10939057
    Abstract: One example system comprises a LIDAR sensor that rotates about an axis to scan an environment of the LIDAR sensor. The system also comprises one or more cameras that detect external light originating from one or more external light sources. The one or more cameras together provide a plurality of rows of sensing elements. The rows of sensing elements are aligned with the axis of rotation of the LIDAR sensor. The system also comprises a controller that operates the one or more cameras to obtain a sequence of image pixel rows. A first image pixel row in the sequence is indicative of external light detected by a first row of sensing elements during a first exposure time period. A second image pixel row in the sequence is indicative of external light detected by a second row of sensing elements during a second exposure time period.
    Type: Grant
    Filed: August 30, 2019
    Date of Patent: March 2, 2021
    Assignee: Waymo LLC
    Inventors: Blaise Gassend, Benjamin Ingram, Andreas Wendel, Mark Alexander Shand
  • Patent number: 10930014
    Abstract: The present disclosure relates to a target, a method, and a system for calibrating a camera. One example embodiment includes a target. The target includes a first pattern of fiducial markers. The target also includes a second pattern of fiducial markers. The first pattern of fiducial markers is a scaled version of the second pattern of fiducial markers, such that a calibration image captured of the target simulates multiple images of a single pattern captured at multiple calibration perspectives.
    Type: Grant
    Filed: August 21, 2019
    Date of Patent: February 23, 2021
    Assignee: Waymo LLC
    Inventors: Andreas Wendel, Volker Grabe, Jeremy Dittmer, Zachary Morriss
  • Patent number: 10921142
    Abstract: Example implementations may relate to sun-aware vehicle routing. In particular, a computing system of a vehicle may determine an expected position of the sun relative to a geographic area. Based on the expected position, the computing system may make a determination that travel of the vehicle through certain location(s) within the geographic area is expected to result in the sun being proximate to an object within a field of view of the vehicle's image capture device. Responsively, the computing system may generate a route for the vehicle in the geographic area based at least on the route avoiding travel of the vehicle through these certain location(s), and may then operate the vehicle to travel in accordance with the generated route. Ultimately, this may help reduce or prevent situations where quality of image(s) degrades due to sunlight, which may allow for use of these image(s) as basis for operating the vehicle.
    Type: Grant
    Filed: December 14, 2017
    Date of Patent: February 16, 2021
    Assignee: Waymo LLC
    Inventors: Jeremy Dittmer, Andreas Wendel