Patents by Inventor Andreas Wiesner
Andreas Wiesner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250073818Abstract: The application relates to a device for producing three-dimensional workpieces, the device including: a structural surface designed to receive a molding compound; and an irradiation arrangement designed to selectively irradiate the molding compound on the structural surface with electromagnetic radiation, in order to produce a workpiece by means of generative layer construction, where the irradiation device comprises a plurality of irradiation units, the irradiation units being designed to irradiate an individual region of the structural surface respectively associated with the irradiation units, and where the beams emitted by the irradiation units respectively have a cross-sectional surface corresponding to between approx. 2% and approx. 170% of the surface of the respectively associated individual region. The application also relates to the use of such a device and to a method for producing three-dimensional workpieces by means of such a device.Type: ApplicationFiled: November 19, 2024Publication date: March 6, 2025Inventors: Toni Adam Krol, Andreas Wiesner, Christiane Thiel, Lukas Roesgen, Felix Mutz, Naveed Iqbal, Jan Wilkes, Karsten Huebinger, Dieter Schwarze, Simon Steven, Arne Neef
-
Patent number: 12172236Abstract: The application relates to a device for producing three-dimensional workpieces, the device including: a structural surface designed to receive a molding compound; and an irradiation arrangement designed to selectively irradiate the molding compound on the structural surface with electromagnetic radiation, in order to produce a workpiece by means of generative layer construction, where the irradiation device comprises a plurality of irradiation units, the irradiation units being designed to irradiate an individual region of the structural surface respectively associated with the irradiation units, and where the beams emitted by the irradiation units respectively have a cross-sectional surface corresponding to between approx. 2% and approx. 170% of the surface of the respectively associated individual region. The application also relates to the use of such a device and to a method for producing three-dimensional workpieces by means of such a device.Type: GrantFiled: March 29, 2019Date of Patent: December 24, 2024Assignee: Nikon SLM Solutions AGInventors: Toni Adam Krol, Andreas Wiesner, Christiane Thiel, Lukas Roesgen, Felix Mutz, Naveed Iqbal, Jan Wilkes, Karsten Huebinger, Dieter Schwarze, Simon Steven, Arne Neef
-
Patent number: 12128478Abstract: We describe a calibration method for calibrating one or more optical elements of an additive layer manufacturing apparatus useable for producing a three-dimensional workpiece, the method comprising: projecting, using the one or more optical elements, an optical pattern onto a material in order to prepare, from said material, solidified material layers using an additive layer manufacturing technique to form a test sample; determining a geometry of the test sample; comparing the determined geometry with a nominal geometry to generate calibration data; and calibrating the one or more optical elements using said calibration data.Type: GrantFiled: March 31, 2020Date of Patent: October 29, 2024Assignee: NIKON SLM Solutions AGInventors: Lukas Roesgen, Daniel Brueck, Andreas Wiesner
-
Publication number: 20230226753Abstract: The invention relates to a method for controlling an irradiation system (20), the irradiation system (20) being used in a device (10) for the additive manufacturing of three-dimensional workpieces and comprising at least three irradiation units (22a-d, 50), the method comprising the following steps: a) defining an irradiation region (30a-d) for each of the irradiation units (22a-d, 50), the irradiation regions (30a-d) each comprising a portion of an irradiation plane (28) which extends parallel to a carrier (16) of the device (10), and the irradiation regions (30a-d) being defined such that they overlap in a common overlap region (34); b) irradiating a raw material powder layer on the carrier (16) to produce a workpiece layer; c) arranging a further raw material powder layer on the already jetted raw material powder layer to produce a further workpiece layer. d) The invention also relates to a device for performing this method.Type: ApplicationFiled: March 29, 2023Publication date: July 20, 2023Inventors: Andreas Wiesner, Jan Wilkes, Christiane Thiel, Lukas Roesgen
-
Patent number: 11639028Abstract: The invention relates to a method for controlling an irradiation system (20), the irradiation system (20) being used in a device (10) for the additive manufacturing of three-dimensional workpieces and comprising at least three irradiation units (22a-d, 50), the method comprising the following steps: a) defining an irradiation region (30a-d) for each of the irradiation units (22a-d, 50), the irradiation regions (30a-d) each comprising a portion of an irradiation plane (28) which extends parallel to a carrier (16) of the device (10), and the irradiation regions (30a-d) being defined such that they overlap in a common overlap region (34); b) irradiating a raw material powder layer on the carrier (16) to produce a workpiece layer; c) arranging a further raw material powder layer on the already jetted raw material powder layer to produce a further workpiece layer. d) The invention also relates to a device for performing this method.Type: GrantFiled: January 15, 2018Date of Patent: May 2, 2023Assignee: SLM Solutions Group AGInventors: Andreas Wiesner, Jan Wilkes, Christiane Thiel, Lukas Roesgen
-
Publication number: 20220193772Abstract: We describe a calibration method for calibrating one or more optical elements of an additive layer manufacturing apparatus useable for producing a three-dimensional workpiece, the method comprising: projecting, using the one or more optical elements, an optical pattern onto a material in order to prepare, from said material, solidified material layers using an additive layer manufacturing technique to form a test sample; determining a geometry of the test sample; comparing the determined geometry with a nominal geometry to generate calibration data; and calibrating the one or more optical elements using said calibration data.Type: ApplicationFiled: March 31, 2020Publication date: June 23, 2022Inventors: Lukas Roesgen, Daniel Brueck, Andreas Wiesner
-
Patent number: 11278965Abstract: An apparatus including a process chamber accommodating a carrier for receiving a raw material powder. An irradiation device of the apparatus is configured to selectively irradiate electromagnetic or particle radiation onto the raw material powder on the carrier in order to produce a work piece by an additive layer construction method, wherein a transmission element allows the transmission of the electromagnetic or particle radiation into the process chamber. The apparatus further includes a gas inlet and a gas outlet for supplying and discharging gas to and from the process chamber which are configured to generate a protective gas stream for protecting the transmission element from being contaminated by impurities present in the process chamber. The gas inlet includes a gas permeable, porous component forming a gas inlet area.Type: GrantFiled: May 13, 2019Date of Patent: March 22, 2022Assignee: SLM SOLUTIONS GROUP AGInventors: Isabell Huebinger, Jan Wilkes, Naveed Iqbal, Andreas Wiesner, Eduard Gieser
-
Patent number: 10919287Abstract: In a method for controlling an irradiation system for use in an apparatus for producing a three-dimensional work piece, a first and a second irradiation area as well as an overlap area arranged between the first and the second irradiation area are defined on a surface of a carrier adapted to receive layers of a raw material powder to be irradiated with electromagnetic or particle radiation emitted by the irradiation system. A first irradiation unit of the irradiation system is assigned to the first irradiation area and the overlap area, and a second irradiation unit of the irradiation system is assigned to the second irradiation area and the overlap area. At least one of the first irradiation area, the second irradiation area and the overlap area is defined in dependence on a geometry of the three-dimensional work piece to be produced.Type: GrantFiled: July 20, 2016Date of Patent: February 16, 2021Assignee: SLM SOLUTIONS GROUP AGInventors: Andreas Wiesner, Dieter Schwarze, Toni Adam Krol
-
Patent number: 10773304Abstract: A powder circuit (36) for use in an apparatus (10) for producing three-dimensional work pieces by irradiating layers of a raw material powder with electromagnetic or particle radiation comprises a process chamber (12) accommodating a carrier (16) and a powder application device (14) for applying a raw material powder onto the carrier (16), the process chamber (12) being provided with a powder inlet (30) for supplying raw material powder to the powder application device (14) and a powder outlet (32) for discharging excess raw material powder from the process chamber (12). The powder circuit (36) further comprises a powder circulation line (34) connecting the powder outlet (32) of the process chamber (12) to the powder inlet (30) of the process chamber (12) and a conveying device (38) arranged in the powder circulation line (34) for conveying the raw material powder through the powder circulation line (34).Type: GrantFiled: November 23, 2015Date of Patent: September 15, 2020Assignee: SLM Solutions Group AGInventors: Andreas Wiesner, Bodo Haack, Dieter Schwarze
-
Patent number: 10710304Abstract: An apparatus for producing a three-dimensional work piece comprises a process chamber accommodating a carrier for receiving a raw material powder and an irradiation device for selectively irradiating electromagnetic or particle radiation onto the raw material powder applied onto the carrier in order to produce the work piece from said raw material powder by an additive layer construction method, the irradiation device comprising at least one radiation source and at least one optical unit with a plurality of optical elements. A heat transfer arrangement is configured to transfer heat generated by a heat source to the at least one optical unit of the irradiation device. The apparatus further comprises a control unit configured to control the heat transfer arrangement so as to adjust a temperature of the at least one optical unit of the irradiation device.Type: GrantFiled: November 14, 2017Date of Patent: July 14, 2020Assignee: SLM Solutions Group AGInventors: Andreas Wiesner, Christiane Thiel, Daniel Brueck, Isabell Huebinger
-
Patent number: 10543530Abstract: An unpacking device for use in an apparatus for producing a three-dimensional work piece by irradiating layers of a raw material powder with electromagnetic or particle radiation, the unpacking device comprises a holding device which is configured to hold a building chamber arrangement. The building chamber arrangement comprises a building chamber accommodating a carrier, wherein the carrier is configured to receive a three-dimensional work piece produced from a raw material powder by an additive layering process. An engagement unit of the unpacking device is configured to engage with the carrier of the building chamber arrangement. A moving mechanism is configured to cause a relative movement between the building chamber and the engagement unit with the carrier engaged therewith so as to allow a separation of the carrier with a three-dimensional work piece received thereon from the building chamber.Type: GrantFiled: November 13, 2016Date of Patent: January 28, 2020Assignee: SLM Solutions Group AGInventors: André Hermann, Toni Adam Krol, Andreas Wiesner, Jan Wilkes, Bodo Haack, Karsten Huebinger, Peter Koerner, Simon Mueller, Kaj Merten Berggreen, Jonas Mersch
-
Publication number: 20200023585Abstract: The invention relates to a device (10) for the layered production of a three-dimensional workpiece, comprising: a build space (30) in which the workpiece is manufacturable by selectively solidification of raw material powder layers; an irradiating system (20) which is adapted to selectively solidify the raw material powder layers in the build space (30) by emitting a processing beam; at least one calibrating structure (36); a sensor arrangement (25) which is adapted to detect an irradiation of the calibrating structure (36) by the irradiating system (20); and a control unit (26) which is adapted to calibrate the irradiating system (20) on the basis of detection information of the sensor arrangement, wherein the calibrating structure (36) is arranged outside the build space (30). The invention also relates to a method for calibrating an irradiating system of a device for the layer-by-layer manufacture of a three-dimensional workpiece.Type: ApplicationFiled: February 9, 2018Publication date: January 23, 2020Inventors: Andreas Wiesner, Toni Adam Krol, Jan Wilkes, Birk Hoppe, Christiane Thiel, Christopher Stengel
-
Publication number: 20190375012Abstract: The invention relates to a method for controlling an irradiation system (20), the irradiation system (20) being used in a device (10) for the additive manufacturing of three-dimensional workpieces and comprising at least three irradiation units (22a-d, 50), the method comprising the following steps: a) defining an irradiation region (30a-d) for each of the irradiation units (22a-d, 50), the irradiation regions (30a-d) each comprising a portion of an irradiation plane (28) which extends parallel to a carrier (16) of the device (10), and the irradiation regions (30a-d) being defined such that they overlap in a common overlap region (34); b) irradiating a raw material powder layer on the carrier (16) to produce a workpiece layer; c) arranging a further raw material powder layer on the already jetted raw material powder layer to produce a further workpiece layer. d) The invention also relates to a device for performing this method.Type: ApplicationFiled: January 15, 2018Publication date: December 12, 2019Inventors: Andreas Wiesner, Jan Wilkes, Christiane Thiel, Lukas Roesgen
-
Publication number: 20190262901Abstract: An apparatus including a process chamber accommodating a carrier for receiving a raw material powder. An irradiation device of the apparatus is configured to selectively irradiate electromagnetic or particle radiation onto the raw material powder on the carrier in order to produce a work piece by an additive layer construction method, wherein a transmission element allows the transmission of the electromagnetic or particle radiation into the process chamber. The apparatus further includes a gas inlet and a gas outlet for supplying and discharging gas to and from the process chamber which are configured to generate a protective gas stream for protecting the transmission element from being contaminated by impurities present in the process chamber. The gas inlet includes a gas permeable, porous component forming a gas inlet area.Type: ApplicationFiled: May 13, 2019Publication date: August 29, 2019Inventors: Isabell Huebinger, Jan Wilkes, Naveed Iqbal, Andreas Wiesner, Eduard Gieser
-
Publication number: 20190224913Abstract: The application relates to a device for producing three-dimensional workpieces, the device including: a structural surface designed to receive a molding compound; and an irradiation arrangement designed to selectively irradiate the molding compound on the structural surface with electromagnetic radiation, in order to produce a workpiece by means of generative layer construction, where the irradiation device comprises a plurality of irradiation units, the irradiation units being designed to irradiate an individual region of the structural surface respectively associated with the irradiation units, and where the beams emitted by the irradiation units respectively have a cross-sectional surface corresponding to between approx. 2% and approx. 170% of the surface of the respectively associated individual region. The application also relates to the use of such a device and to a method for producing three-dimensional workpieces by means of such a device.Type: ApplicationFiled: March 29, 2019Publication date: July 25, 2019Inventors: Toni Adam Krol, Andreas Wiesner, Christiane Thiel, Lukas Roesgen, Felix Mutz, Naveed Iqbal, Jan Wilkes, Karsten Huebinger, Dieter Schwarze, Simon Mueller, Arne Neef
-
Patent number: 10335854Abstract: A method for producing three-dimensional work pieces comprises the steps of supplying gas to a process chamber accommodating a carrier and a powder application device, applying a layer of raw material powder onto the carrier by means of the powder application device, selectively irradiating electromagnetic or particle radiation onto the raw material powder applied onto the carrier by means of an irradiation device, discharging gas containing particulate impurities from the process chamber, and controlling the operation of the irradiation device by means of a control unit such that a radiation beam emitted by at least one radiation source of the irradiation device is guided over the layer of raw material powder applied onto the carrier according to a radiation pattern containing a plurality of scan vectors.Type: GrantFiled: April 1, 2014Date of Patent: July 2, 2019Assignee: SLM SOLUTIONS GROUP AGInventors: Andreas Wiesner, Dieter Schwarze
-
Patent number: 10293546Abstract: A powder application apparatus is provided for use in a device for manufacturing work pieces by exposing powder layers to electromagnetic radiation or particle radiation. The powder application apparatus comprises a first powder storage provided in a first part of the powder application apparatus and configured to receive and store raw material powder. The powder application apparatus further comprises a first powder supply channel provided in a second part of the powder application apparatus and configured to discharge raw material powder from the first powder storage onto a carrier located below the apparatus. A first channel opening/closing element is configured to be moved between a first position to allow the discharge of raw material powder from the first powder storage onto the carrier, and a second position in which the discharge of raw material powder from the first powder storage onto the carrier is presented.Type: GrantFiled: June 22, 2018Date of Patent: May 21, 2019Assignee: SLM SOLUTIONS GROUP AGInventors: André Hermann, Andreas Wiesner, Dieter Schwarze
-
Publication number: 20180297276Abstract: A powder application apparatus is provided for use in a device for manufacturing work pieces by exposing powder layers to electromagnetic radiation or particle radiation. The powder application apparatus comprises a first powder storage provided in a first part of the powder application apparatus and configured to receive and store raw material powder. The powder application apparatus further comprises a first powder supply channel provided in a second part of the powder application apparatus and configured to discharge raw material powder from the first powder storage onto a carrier located below the apparatus. A first channel opening/closing element is configured to be moved between a first position to allow the discharge of raw material powder from the first powder storage onto the carrier, and a second position in which the discharge of raw material powder from the first powder storage onto the carrier is presented.Type: ApplicationFiled: June 22, 2018Publication date: October 18, 2018Inventors: ANDRÉ HERMANN, ANDREAS WIESNER, DIETER SCHWARZE
-
Patent number: 10046520Abstract: A powder application apparatus is provided for use in a device for manufacturing work pieces by exposing powder layers to electromagnetic radiation or particle radiation. The powder application apparatus comprises a first powder storage provided in a first part of the powder application apparatus and configured to receive and store raw material powder. The powder application apparatus further comprises a first powder supply channel provided in a second part of the powder application apparatus and configured to discharge raw material powder from the first powder storage onto a carrier located below the apparatus. A first channel opening/closing element is configured to be moved between a first position to allow the discharge of raw material powder from the first powder storage onto the carrier, and a second position in which the discharge of raw material powder from the first powder storage onto the carrier is presented.Type: GrantFiled: June 23, 2014Date of Patent: August 14, 2018Assignee: SLM SOLUTIONS GROUP AGInventors: André Hermann, Andreas Wiesner, Dieter Schwarze
-
Publication number: 20180133964Abstract: An apparatus (10) for producing a three-dimensional work piece (12) comprises a process chamber (14) accommodating a carrier (16) for receiving a raw material powder (18) and an irradiation device (20) for selectively irradiating electromagnetic or particle radiation onto the raw material powder (18) applied onto the carrier (16) in order to produce the work piece (12) from said raw material powder (18) by an additive layer construction method, the irradiation device (20) comprising at least one radiation source (22, 24) and at least one optical unit (26, 32) with a plurality of optical elements (28, 34). A heat transfer arrangement (38) is configured to transfer heat generated by a heat source (40) to the at least one optical unit (26, 32) of the irradiation device (20). The apparatus further comprises a control unit (42) configured to control the heat transfer arrangement (38) so as to adjust a temperature of the at least one optical unit (26, 32) of the irradiation device (20).Type: ApplicationFiled: November 14, 2017Publication date: May 17, 2018Inventors: Andreas Wiesner, Christiane Thiel, Daniel Brueck, Isabell Huebinger