Patents by Inventor Andreas Wild

Andreas Wild has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180174054
    Abstract: Various systems and methods for implementing unsupervised or reinforcement learning operations for a neuron weight used in a neural network are described. In an example, the learning operations include processing a spike train input at a neuron of a spiking neural network, applying a synaptic weight, and observing spike events occurring before and after the neuron processing based on respective spike traces. A synaptic weight update process operates to generate a new value of the synaptic weight based upon the spike traces, configuration values, and a reference weight value. A reference weight update process also operates to generate a new value of the reference value for significant changes to the synaptic weight. Reinforcement may be provided in some examples to implement changes to the reference weight in reduced time. In some examples, the techniques may be implemented in a neuromorphic hardware implementation of the spiking neural network.
    Type: Application
    Filed: December 20, 2016
    Publication date: June 21, 2018
    Inventors: Andreas Wild, Narayan Srinivasa
  • Publication number: 20180174042
    Abstract: Systems and methods for supervised learning and cascaded training of a neural network are described. In an example, a supervised process is used for strengthening connections to classifier neurons, with a supervised learning process of receiving a first spike at a classifier neuron from a processing neuron in response to training data, and receiving an out-of-band communication of a second desired (artificial) spike at the classifier neuron that corresponds to the classification of the training data. As a result of spike timing dependent plasticity, connections to the classifier neuron are strengthened. In another example, a cascaded technique is disclosed to generate a plurality of trained neural networks that are separately initialized and trained based on different types or forms of training data, which may be used with cascaded or parallel operation of the plurality of trained neural networks.
    Type: Application
    Filed: December 20, 2016
    Publication date: June 21, 2018
    Inventors: Narayan Srinivasa, Yongqiang Cao, Andreas Wild
  • Publication number: 20180108911
    Abstract: The present invention relates to polymers and to the use thereof in the form of active electrode material or in an electrode slurry as electrical charge storage means, the electrical charge storage means especially being secondary batteries. These secondary batteries are especially notable for high cell voltages, and simple and scalable processing and production methods (for example by means of screen printing).
    Type: Application
    Filed: August 8, 2016
    Publication date: April 19, 2018
    Applicant: Evonik Degussa GmbH
    Inventors: Ulrich SCHUBERT, Andreas WILD, Bernhard HAEUPLER
  • Publication number: 20180102541
    Abstract: The present invention relates to polymers and to the use thereof in the form of active electrode material or in an electrode slurry as electrical charge storage means, the electrical charge storage means especially being secondary batteries. The secondary batteries are especially notable for high cell voltages, a small drop in capacity even on undergoing several charging and discharging cycles, and simple and scalable processing and production methods (for example by means of screen printing).
    Type: Application
    Filed: August 8, 2016
    Publication date: April 12, 2018
    Applicant: Evonik Degussa GmbH
    Inventors: Ulrich SCHUBERT, Andreas WILD, Bernhard HAEUPLER
  • Patent number: 9890230
    Abstract: Novel tetracyanoanthraquinodimethane polymers and use thereof. The problem addressed was that of providing novel polymers which are preparable with a low level of complexity, with the possibility of controlled influence on the physicochemical properties thereof within wide limits in the course of synthesis, and which are usable as active media in electrical charge storage elements for high storage capacity, long lifetime and stable charging/discharging plateaus. Tetracyanoanthraquinodimethane polymers consisting of an oligomeric or polymeric compound of the general formula I have been found.
    Type: Grant
    Filed: March 6, 2015
    Date of Patent: February 13, 2018
    Assignee: Evonik Degussa GmbH
    Inventors: Bernhard Haeupler, Ulrich Schubert, Andreas Wild
  • Patent number: 9856336
    Abstract: Novel tetracyanoanthraquinodimethane polymers and use thereof. The problem addressed was that of providing novel polymers which are preparable with a low level of complexity, with the possibility of controlled influence on the physicochemical properties thereof within wide limits in the course of synthesis, and which are usable as active media in electrical charge storage elements for high storage capacity, long lifetime and stable charging/discharging plateaus. Tetracyanoanthraquinodimethane polymers consisting of an oligomeric or polymeric compound of the general formula I have been found.
    Type: Grant
    Filed: March 6, 2015
    Date of Patent: January 2, 2018
    Assignee: Evonik Degussa GmbH
    Inventors: Bernhard Haeupler, Ulrich Schubert, Andreas Wild
  • Publication number: 20170179525
    Abstract: The problem addressed was that of providing novel polymers which are preparable with a low level of complexity, with the possibility of controlled influence on the physicochemical properties thereof within wide limits in the course of synthesis, and which are usable as active media in electrical charge storage elements for high storage capacity, long lifetime and stable charging/discharging plateaus. 9,10-Bis(1,3-dithiol-2-ylidene)-9,10-dihydroanthracene polymers consisting of an oligomeric or polymeric compound of the general formula I have been found.
    Type: Application
    Filed: March 26, 2015
    Publication date: June 22, 2017
    Applicant: Evonik Degussa GmbH
    Inventors: Bernhard HAEUPLER, Ulrich SCHUBERT, Andreas WILD
  • Publication number: 20170114162
    Abstract: Novel tetracyanoanthraquinodimethane polymers and use thereof. The problem addressed was that of providing novel polymers which are preparable with a low level of complexity, with the possibility of controlled influence on the physicochemical properties thereof within wide limits in the course of synthesis, and which are usable as active media in electrical charge storage elements for high storage capacity, long lifetime and stable charging/discharging plateaus. Tetracyanoanthraquinodimethane polymers consisting of an oligomeric or polymeric compound of the general formula I have been found.
    Type: Application
    Filed: March 6, 2015
    Publication date: April 27, 2017
    Applicant: EVONIK DEGUSSA GMBH
    Inventors: Bernhard HAEUPLER, Ulrich SCHUBERT, Andreas WILD
  • Publication number: 20170058062
    Abstract: The present invention relates to polymers and to the use thereof in the form of active electrode material or in an electrode slurry as electrical charge storage means, the electrical charge storage means especially being secondary batteries. The secondary batteries are especially notable for high cell voltages, even when undergoing several charging and discharging cycles, and simple and scalable processing and production methods (for example by means of screen printing).
    Type: Application
    Filed: August 25, 2016
    Publication date: March 2, 2017
    Applicant: Evonik Degussa GmbH
    Inventors: Ulrich SCHUBERT, Andreas WILD, Bernhard HAEUPLER
  • Publication number: 20170062825
    Abstract: The present invention relates to polymers and to the use thereof in the form of active electrode material or in an electrode slurry as electrical charge storage means, the electrical charge storage means especially being secondary batteries. The secondary batteries are especially notable for high cell voltages, and high capacities after undergoing several charging and discharging cycles, and simple and scalable processing and production methods (for example by means of screen printing).
    Type: Application
    Filed: August 25, 2016
    Publication date: March 2, 2017
    Applicant: Evonik Degussa GmbH
    Inventors: Ulrich SCHUBERT, Andreas WILD, Bernhard HAEUPLER
  • Patent number: 8552501
    Abstract: A method of forming an inverted T shaped channel structure having a vertical channel portion and a horizontal channel portion for an Inverted T channel Field Effect Transistor ITFET device comprises semiconductor substrate, a first layer of a first semiconductor material over the semiconductor substrate and a second layer of a second semiconductor material over the first layer. The first and the second semiconductor materials are selected such that the first semiconductor material has a rate of removal which is less than a rate of removal of the second semiconductor material.
    Type: Grant
    Filed: April 16, 2012
    Date of Patent: October 8, 2013
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Marius Orlowski, Andreas Wild
  • Patent number: 8293608
    Abstract: An intermediate product in the manufacture of a vertical multiple-channel FET device containing alternating —Si—[(SiGe)—Si]u- stacked layers is shown, as well as a process for selectively etching the SiGe layers in such a stacked layer system, and products obtained from such selective etching. Differential Ge content is added to the successive layers to provide uniform removal of the sacrificial SiGe layers.
    Type: Grant
    Filed: February 8, 2008
    Date of Patent: October 23, 2012
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Marius Orlowski, Andreas Wild
  • Patent number: 8264060
    Abstract: Providing a first layer of a semiconductor structure having at least one air gap between conductive lines formed in the first layer. The air gap extends into the first layer from a first surface of the first layer. A barrier dielectric material over the first surface and the air gap is selected to have a dielectric constant less than 3.5 and to provide a barrier to prevent chemicals entering the at least one air gap. An air gap can extend from a first surface of the first layer to at least a portion of side surfaces of the at least two conductive lines to expose at least a portion of the side surfaces.
    Type: Grant
    Filed: November 21, 2011
    Date of Patent: September 11, 2012
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Greg Braeckelmann, Marius Orlowski, Andreas Wild
  • Publication number: 20120199879
    Abstract: A method of forming an inverted T shaped channel structure having a vertical channel portion and a horizontal channel portion for an Inverted T channel Field Effect Transistor ITFET device comprises semiconductor substrate, a first layer of a first semiconductor material over the semiconductor substrate and a second layer of a second semiconductor material over the first layer. The first and the second semiconductor materials are selected such that the first semiconductor material has a rate of removal which is less than a rate of removal of the second semiconductor material.
    Type: Application
    Filed: April 16, 2012
    Publication date: August 9, 2012
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Marius Orlowski, Andreas Wild
  • Publication number: 20120126413
    Abstract: Providing a first layer of a semiconductor structure having at least one air gap between conductive lines formed in the first layer. The air gap extends into the first layer from a first surface of the first layer. A barrier dielectric material over the first surface and the air gap is selected to have a dielectric constant less than 3.5 and to provide a barrier to prevent chemicals entering the at least one air gap. An air gap can extend from a first surface of the first layer to at least a portion of side surfaces of the at least two conductive lines to expose at least a portion of the side surfaces.
    Type: Application
    Filed: November 21, 2011
    Publication date: May 24, 2012
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Greg Braeckelmann, Marius Orlowski, Andreas Wild
  • Patent number: 8158484
    Abstract: A method of forming an inverted T shaped channel structure having a vertical channel portion and a horizontal channel portion for an Inverted T channel Field Effect Transistor ITFET device comprises providing a semiconductor substrate, providing a first layer of a first semiconductor material over the semiconductor substrate, and providing a second layer of a second semiconductor material over the first layer. The first and the second semiconductor materials are selected such that the first semiconductor material has a rate of removal which is less than a rate of removal of the second semiconductor material. The method further comprises removing a portion of the first layer and a portion of the second layer selectively according to the different rates of removal so as to provide a lateral layer and the vertical channel portion of the inverted T shaped channel structure and removing a portion of the lateral layer so as to provide the horizontal channel portion of the inverted T shaped channel structure.
    Type: Grant
    Filed: October 3, 2007
    Date of Patent: April 17, 2012
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Marius Orlowski, Andreas Wild
  • Patent number: 8071459
    Abstract: A method of sealing an air gap in a layer of a semiconductor structure comprises providing a first layer of the semiconductor structure having at least one air gap for providing isolation between at least two conductive lines formed in the first layer. The at least one air gap extends into the first layer from a first surface of the first layer. The method further comprises forming a barrier layer of a barrier dielectric material over the first surface of the first layer and the at least one air gap. The barrier dielectric material is selected to have a dielectric constant less than 3.5 and to provide a barrier to prevent chemicals entering the at least one air gap.
    Type: Grant
    Filed: April 17, 2008
    Date of Patent: December 6, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Greg Braeckelmann, Marius Orlowski, Andreas Wild
  • Patent number: 7895981
    Abstract: In order to produce a variable valve lift device for the lift adjustment of the gas-exchange valves of an internal combustion engine, by means of which with adjustment forces and holding forces, independently from whether said holding forces and adjustment forces are applied mechanically, hydraulically or electrically, with an adjustment of the valve lift being as cost-effective as possible, and with maximum accuracy of the adjustment or control of the valve lift to be taken between the individual cylinders of a multi-cylinder internal combustion engine, and, moreover, the adjustment possibility of the valve lift of the valves of an internal combustion engine with several cylinders is obtained within smallest tolerances, it is suggested that a valve lift device (1) has a rotatable eccentric shaft (3), which consists of several eccentrics (4, 5) and whereby all possible contours of the eccentrics (4, 5) are positioned within a circle, which is formed by means of the external diameters of a bearing (6, 7) of th
    Type: Grant
    Filed: March 26, 2004
    Date of Patent: March 1, 2011
    Assignees: enTec Consulting GmbH, Hydraulik-Ring GmbH
    Inventors: Gerlinde Bösl-Flierl, Rudolf Flierl, Wilhelm Hannibal, Michael Jubelt, Andreas Knecht, Andreas Wild
  • Publication number: 20110021036
    Abstract: A method of sealing an air gap in a layer of a semiconductor structure comprises providing a first layer of the semiconductor structure having at least one air gap for providing isolation between at least two conductive lines formed in the first layer. The at least one air gap extends into the first layer from a first surface of the first layer. The method further comprises forming a barrier layer of a barrier dielectric material over the first surface of the first layer and the at least one air gap. The barrier dielectric material is selected to have a dielectric constant less than 3.5 and to provide a barrier to prevent chemicals entering the at least one air gap.
    Type: Application
    Filed: April 17, 2008
    Publication date: January 27, 2011
    Inventors: Greg Braecklmann, Marius Orlowski, Andreas Wild
  • Publication number: 20110003451
    Abstract: An intermediate product in the manufacture of a vertical multiple-channel FET device containing alternating —Si—[(SiGe)—Si]u- stacked layers is shown, as well as a process for selectively etching the SiGe layers in such a stacked layer system, and products obtained from such selective etching. Differential Ge content is added to the successive layers to provide uniform removal of the sacrificial SiGe layers.
    Type: Application
    Filed: February 8, 2008
    Publication date: January 6, 2011
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Marius Orlowski, Andreas Wild