Patents by Inventor Andreas Wolpert

Andreas Wolpert has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230288662
    Abstract: A method for producing a main body (33) of an optical element for semiconductor lithography includes: —producing a blank (32), —introducing at least one fluid channel (36.x) into the blank (32), then —producing the main body (33) by shaping the blank (32) onto a mold (42). Furthermore, the disclosure describes a main body (33) of an optical element that includes at least one fluid channel (36.x), the fluid channel (36.x) being embodied such that the distance between the fluid channel (36.x) and the surface (40) of the main body (33) provided for an optically active area (41) varies by less than 1 mm, preferably less than 0.1 mm and particularly preferably less than 0.02 mm.
    Type: Application
    Filed: May 18, 2023
    Publication date: September 14, 2023
    Inventors: Franz-Josef STICKEL, Andreas WOLPERT
  • Patent number: 11213926
    Abstract: A method for polishing a workpiece in the production of an optical element, in particular for microlithography, wherein a relative movement takes place between a polishing tool (300) and a workpiece surface (110, 120, 210) being machined. A polishing tool surface (215, 315) of the polishing tool (300) is formed by a viscoelastic polishing medium (303), wherein the polishing tool surface has an average diameter which is less than 50% of the average diameter of the workpiece surface being machined. The polishing tool surface during polishing is guided by an overrun distance beyond at least one edge (110a, 110b, 120a, 120b, 210a, 210b) delimiting the workpiece surface being machined, wherein the average diameter of the polishing tool surface is at least twice the overrun distance.
    Type: Grant
    Filed: August 19, 2020
    Date of Patent: January 4, 2022
    Assignee: CARL ZEISS SMT GMBH
    Inventors: Andreas Wolpert, Franz-Josef Stickel
  • Publication number: 20200376623
    Abstract: A method for polishing a workpiece in the production of an optical element, in particular for microlithography, wherein a relative movement takes place between a polishing tool (300) and a workpiece surface (110, 120, 210) being machined. A polishing tool surface (215, 315) of the polishing tool (300) is formed by a viscoelastic polishing medium (303), wherein the polishing tool surface has an average diameter which is less than 50% of the average diameter of the workpiece surface being machined. The polishing tool surface during polishing is guided by an overrun distance beyond at least one edge (110a, 110b, 120a, 120b, 210a, 210b) delimiting the workpiece surface being machined, wherein the average diameter of the polishing tool surface is at least twice the overrun distance.
    Type: Application
    Filed: August 19, 2020
    Publication date: December 3, 2020
    Inventors: Andreas WOLPERT, Franz-Josef STICKEL
  • Patent number: 10833348
    Abstract: A subunit of a battery module (2), comprising a first receiving element (3) and a second receiving element (4) which are connected to each other, forming at least one first receiving space (7) and at least one second receiving space (8), wherein the first receiving space (7) and the second receiving space (8) are separated from each other, and at least one battery cell stack (5) or at least one battery cell (6) is arranged in the first receiving space (7), and the second receiving space (8) is configured for receiving a temperature-control fluid (9).
    Type: Grant
    Filed: April 17, 2018
    Date of Patent: November 10, 2020
    Assignee: Robert Bosch GmbH
    Inventor: Andreas Wolpert
  • Publication number: 20180309154
    Abstract: A subunit of a battery module (2), comprising a first receiving element (3) and a second receiving element (4) which are connected to each other, forming at least one first receiving space (7) and at least one second receiving space (8), wherein the first receiving space (7) and the second receiving space (8) are separated from each other, and at least one battery cell stack (5) or at least one battery cell (6) is arranged in the first receiving space (7), and the second receiving space (8) is configured for receiving a temperature-control fluid (9).
    Type: Application
    Filed: April 17, 2018
    Publication date: October 25, 2018
    Inventor: Andreas Wolpert