Patents by Inventor Andrei A. Stolov

Andrei A. Stolov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240103214
    Abstract: Described herein are systems, methods, and articles of manufacture for a coated fiber modified by actinic radiation to increase back-scattering, which experiences very little back-scattering decay at a temperature and time of exposure that is sufficient to noticeably degrade the coating and/or noticeably degrade the optical fiber due to outgassing of hydrogen from the coating. In one embodiment, an optical fiber comprises a fiber length, a coating having a treated coating weight, wherein the treated coating weight is at least 25% less of an original coating weight prior to an annealing treatment, and an optical back-scatter along the fiber length greater than a Rayleigh back-scattering over the fiber length, wherein the optical back-scatter does not decrease along the fiber length by more than 3 dB after exposure to annealing treatment.
    Type: Application
    Filed: February 2, 2022
    Publication date: March 28, 2024
    Applicant: OFS Fitel, LLC
    Inventors: Robert S Dyer, Adam Hokansson, Matthew Popelka, Brian Savran, Paul S Westbrook, Vixay R Soundara, Andrei A Stolov
  • Publication number: 20230036344
    Abstract: Described herein are systems, methods, and articles of manufacture for a spatially nonuniform scattering profile along its length, whose backscattering signal can be used for sensing even after fiber attenuation increases due to the conditions in the sensing environment. In one embodiment, the fiber has been pre-exposed to the conditions that produce attenuation, and the spatially nonuniform profile compensates for this. Subsequent exposure then results in very little or at least acceptable levels of additional attenuation. An exemplary fiber comprises a fiber length and an optical back scatter along the fiber length greater than a Rayleigh back scattering over the fiber length, wherein the optical back scatter does not decrease along the fiber length by more than 3 dB after exposure to a hydrogen-rich first environment having a given pressure and temperature.
    Type: Application
    Filed: January 11, 2021
    Publication date: February 2, 2023
    Applicant: OFS Fitel, LLC
    Inventors: Andrei A Stolov, Paul S Westbrook
  • Patent number: 10689521
    Abstract: Disclosed herein is a composition for coating an optical fiber comprising a free radically curable acrylate and/or a methacrylate functionalized oligomer having a density of less than 1.0 g/cm3; where the acrylate and/or the methacrylate functionalized oligomer has a functionality of 1 or more; a photoinitiator; and optionally a free radically curable acrylate and/or methacrylate diluent monomer that has a density of less than 1.0 g/cm3; where the coating composition is disposed and cured on an optical fiber; where the density of the cured coating is less than 1.0 g/cm3; and where the average functionality of the composition is greater than one.
    Type: Grant
    Filed: November 18, 2015
    Date of Patent: June 23, 2020
    Assignee: OFS FITEL, LLC
    Inventors: David Burgess, Adam Hokansson, Debra A Simoff, Andrei A Stolov, Jacob Wrubel
  • Patent number: 10401573
    Abstract: Embodiments are directed to a method and device for coupling an optical fiber sensing element to an apparatus under test. A channel is affixed to the apparatus under test. The channel is partially filled with a coupling material. The fiber optic sensing element is placed on the coupling material. Coupling material is placed in the channel to uniformly surround the fiber optic sensing element and tightly couple the fiber optic sensing element to the apparatus under test.
    Type: Grant
    Filed: March 26, 2018
    Date of Patent: September 3, 2019
    Assignee: OFS FITEL, LLC
    Inventors: Kevin G Bouchard, Robert S Dyer, Michael J Hines, Andrei A Stolov
  • Publication number: 20180292611
    Abstract: Embodiments are directed to a method and device for coupling an optical fiber sensing element to an apparatus under test. A channel is affixed to the apparatus under test. The channel is partially filled with a coupling material. The fiber optic sensing element is placed on the coupling material. Coupling material is placed in the channel to uniformly surround the fiber optic sensing element and tightly couple the fiber optic sensing element to the apparatus under test.
    Type: Application
    Filed: March 26, 2018
    Publication date: October 11, 2018
    Applicant: OFS Fitel, LLC
    Inventors: Kevin G. Bouchard, Robert S. Dyer, Michael J. Hines, Andrei A Stolov
  • Publication number: 20180282550
    Abstract: Disclosed herein is a composition for coating an optical fiber comprising a free radically curable acrylate and/or a methacrylate functionalized oligomer having a density of less than 1.0 g/cm3; where the acrylate and/or the methacrylate functionalized oligomer has a functionality of 1 or more; a photoinitiator, and optionally a free radically curable acrylate and/or methacrylate diluent monomer that has a density of less than 1.0 g/cm3; where the coating composition is disposed and cured on an optical fiber, where the density of the cured coating is less than 1.0 g/cm3; and where the average functionality of the composition is greater than one.
    Type: Application
    Filed: November 18, 2015
    Publication date: October 4, 2018
    Applicant: OFS Fitel, LLC
    Inventors: David Burgess, Adam Hokansson, Debra A Simoff, Andrei A Stolov, Jacob Wrubel
  • Patent number: 10035915
    Abstract: Disclosed herein is a composition comprising 65 to 95 weight percent of a fluorinated monofunctional monomer; 5 to 35 weight percent of a fluorinated multifunctional monomer; and 0.5 to 3 weight percent of a silane coupling agent; where all weight percents are based on the total weight of the composition; where the fluorinated monofunctional monomer and the fluorinated multifunctional monomer are devoid of any trifunctional fluorocarbon moieties when they have 6 or more fluorocarbon repeat units; where the fluorocarbon repeat units are CF2 or CF moieties; and where a crosslinked composition has a shore D hardness of 56 to 85 and has a refractive index (RI) that meets the limitation of the equation RI?1.368+10.8/X, where X denotes wavelength in nanometers.
    Type: Grant
    Filed: October 15, 2014
    Date of Patent: July 31, 2018
    Assignee: OFS FITEL, LLC
    Inventors: Xiaoguang Sun, Debra A Simoff, Andrei A Stolov, Adam Hokansson, Natalia Reyngold
  • Publication number: 20160369103
    Abstract: Disclosed herein is a composition comprising 65 to 95 weight percent of a fluorinated monofunctional monomer; 5 to 35 weight percent of a fluorinated multifunctional monomer; and 0.5 to 3 weight percent of a silane coupling agent; where all weight percents are based on the total weight of the composition; where the fluorinated monofunctional monomer and the fluorinated multifunctional monomer are devoid of any trifunctional fluorocarbon moieties when they have 6 or more fluorocarbon repeat units; where the fluorocarbon repeat units are CF2 or CF moieties; and where a crosslinked composition has a shore D hardness of 56 to 85 and has a refractive index (RI) that meets the limitation of the equation RI?1.368+10.8/X, where X denotes wavelength in nanometers.
    Type: Application
    Filed: October 15, 2014
    Publication date: December 22, 2016
    Inventors: Xiaoguang Sun, Debra A. Simoff, Andrei A. Stolov, Adam Hokansson, Natalia Reyngold