Patents by Inventor Andrei Bernevig

Andrei Bernevig has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230226536
    Abstract: A method for controllably making catalysts with at least one metallic surface state, that includes: a) identifying all the topological insulators in the ICSD, b) calculating the Real Space Invariants of the valence bands for all these topological insulators in order to c) identify in all these topological insulators the Wyckoff Positions where the irreducible Wannier Charge Centers (WCCs) are localized, and then d) selecting as potentially catalytic active compound a topological insulator in which the position of WCCs is not occupied by any atom; e) synthesizing a crystal of the selected potentially catalytic active compound either so that it is grown in a predefined crystallographic direction (characterized by its Miller indices (h,k,l)) which exposes the metallic surface state; or cutting the crystal in a predefined crystallographic direction (characterized by its Miller indices (h,k,l)), so that the metallic surface state is exposed when ( ( { ( h , k , l ) · ( x - X j , y -
    Type: Application
    Filed: June 10, 2020
    Publication date: July 20, 2023
    Applicants: MAX PLANCK GESELLSCHAFT ZUR FÖRDERUNG DER WISSENSCHAFTEN EV, THE TRUSTEES OF PRINCETON UNIVERSITY
    Inventors: Yuanfeng XU, Claudia FELSER, Guowei LI, Chenguang FU, Yan SUN, Bogdan Andrei BERNEVIG, Zhida SONG
  • Patent number: 10020438
    Abstract: A magnetic topological nanowire structure comprises a superconductor and a quasi-1D magnetic nanowire. The quasi-1D magnetic nanowire is coupled to or embedded in the superconductor to produce a self-contained interaction resulting in a spatially separated pair of Majorana fermions. The pair of Majorana fermions corresponds to the topological superconductor and each of the pair of the Majorana fermions are localized near a respective endpoint of the nanowire.
    Type: Grant
    Filed: August 4, 2015
    Date of Patent: July 10, 2018
    Assignee: The Trustees of Princeton University
    Inventors: Ali Yazdani, Andrei Bernevig
  • Publication number: 20160035470
    Abstract: A magnetic topological nanowire structure comprises a superconductor and a quasi-1D magnetic nanowire. The quasi-1D magnetic nanowire is coupled to or embedded in the superconductor to produce a self-contained interaction resulting in a spatially separated pair of Majorana fermions. The pair of Majorana fermions corresponds to the topological superconductor and each of the pair of the Majorana fermions are localized near a respective endpoint of the nanowire.
    Type: Application
    Filed: August 4, 2015
    Publication date: February 4, 2016
    Inventors: Ali Yazdani, Andrei Bernevig