Patents by Inventor Andrei G. Fadeev

Andrei G. Fadeev has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140001143
    Abstract: Delamination resistant glass containers with heat-tolerant coatings are disclosed. In one embodiment, a glass container may include a glass body having an interior surface, an exterior surface and a wall thickness extending from the exterior surface to the interior surface. At least the interior surface of the glass body is delamination resistant. The glass container may further include a heat-tolerant coating positioned on at least a portion of the exterior surface of the glass body. The heat-tolerant coating may be thermally stable at temperatures greater than or equal to 260° C. for 30 minutes.
    Type: Application
    Filed: June 28, 2013
    Publication date: January 2, 2014
    Inventors: Andrei G. Fadeev, Theresa Chang, Dana C. Bookbinder, Santona Pal, Chandan K. Saha, Steven E. DeMartino, Christopher L. Timmons, John S. Peanasky, Robert A. Schaut, Paul S. Danielson, Melinda A. Drake, Robert M. Morena, Kaveh Adib, James P. Hamilton, Susan L. Schiefelbein
  • Patent number: 8425822
    Abstract: A composition of matter suitable for spinning polyaniline fiber, a method for spinning electrically conductive polyaniline fiber, a method for exchanging dopants in polyaniline fibers, and methods for dedoping and redoping polyaniline fibers are described.
    Type: Grant
    Filed: February 28, 2011
    Date of Patent: April 23, 2013
    Assignee: Santa Fe Science and Technology, Inc.
    Inventors: Benjamin R. Mattes, Phillip N. Adams, Dali Yang, Lori A. Brown, Andrei G. Fadeev, Ian D. Norris
  • Patent number: 8329469
    Abstract: Synthetic surfaces capable of supporting culture of undifferentiated human embryonic stem cells in a chemically defined medium include a swellable (meth)acrylate layer and a peptide conjugated to the swellable (meth)acrylate layer. The swellable (meth)acrylate layer may be formed by polymerizing monomers in a composition that includes hydroxyethyl methacrylate, 2-carboxyehylacrylate, and tetra(ethylene glycol) dimethacrylate. The conjugated peptide may include an amino acid sequence of XaanProGlnValThrArgGlyAspValPheThrMetPro, where n is an integer from 0 to 3 and where Xaa is any amino acid. Further, disclosed herein is a swellable (meth)acrylate synthetic surface which can be sterilized by gamma irradiation.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: December 11, 2012
    Assignee: Geron Corporation
    Inventors: Andrei G. Fadeev, Jennifer Gehman, Arthur Winston Martin, Zara Melkoumian, Christopher B. Shogbon, David Michael Weber, Yue Zhou
  • Publication number: 20110266503
    Abstract: A composition of matter suitable for spinning polyaniline fiber, a method for spinning electrically conductive polyaniline fiber, a method for exchanging dopants in polyaniline fibers, and methods for dedoping and redoping polyaniline fibers are described.
    Type: Application
    Filed: February 28, 2011
    Publication date: November 3, 2011
    Applicant: SANTA FE SCIENCE AND TECHNOLOGY, INC.
    Inventors: Benjamin R. Mattes, Phillip N. Adams, Dali Yang, Lori A. Brown, Andrei G. Fadeev, Ian D. Norris
  • Patent number: 7897082
    Abstract: A composition of matter suitable for spinning polyaniline fiber, a method for spinning electrically conductive polyaniline fiber, a method for exchanging dopants in polyaniline fibers, and methods for dedoping and redoping polyaniline fibers are described.
    Type: Grant
    Filed: December 2, 2009
    Date of Patent: March 1, 2011
    Assignee: Santa Fe Science & Technology, Inc.
    Inventors: Benjamin R. Mattes, Phillip N. Adams, Dali Yang, Lori A. Brown, Andrei G. Fadeev, Ian D. Norris
  • Publication number: 20100072428
    Abstract: A composition of matter suitable for spinning polyaniline fiber, a method for spinning electrically conductive polyaniline fiber, a method for exchanging dopants in polyaniline fibers, and methods for dedoping and redoping polyaniline fibers are described.
    Type: Application
    Filed: December 2, 2009
    Publication date: March 25, 2010
    Applicant: Santa Fe Science and Technology, Inc.
    Inventors: Benjamin R. Mattes, Phillip N. Adams, Dali Yang, Lori A. Brown, Andrei G. Fadeev, Ian D. Norris
  • Patent number: 7628944
    Abstract: A composition of matter suitable for spinning polyaniline fiber, a method for spinning electrically conductive polyaniline fiber, a method for exchanging dopants in polyaniline fibers, and methods for dedoping and redoping polyaniline fibers are described.
    Type: Grant
    Filed: September 26, 2003
    Date of Patent: December 8, 2009
    Assignee: Santa Fe Science and Technology, Inc.
    Inventors: Benjamin R. Mattes, Phillip N. Adams, Dali Yang, Lori A. Brown, Andrei G. Fadeev, Ian D. Norris
  • Publication number: 20090191632
    Abstract: Synthetic surfaces capable of supporting culture of undifferentiated human embryonic stem cells in a chemically defined medium include a swellable (meth)acrylate layer and a peptide conjugated to the swellable (meth)acrylate layer. The swellable (meth)acrylate layer may be formed by polymerizing monomers in a composition that includes hydroxyethyl methacrylate, 2-carboxyehylacrylate, and tetra(ethylene glycol) dimethacrylate. The conjugated peptide may include an amino acid sequence of XaanProGlnValThrArgGlyAspValPheThrMetPro, where n is an integer from 0 to 3 and where Xaa is any amino acid. Further, disclosed herein is a swellable (meth)acrylate synthetic surface which can be sterilized by gamma irradiation.
    Type: Application
    Filed: January 30, 2009
    Publication date: July 30, 2009
    Inventors: Andrei G. Fadeev, Jennifer Gehman, Arthur Winston Martin, Zara Melkoumian, Christopher B. Shogbon, David Michael Weber, Yue Zhou
  • Publication number: 20090081797
    Abstract: Plasma treated cyclic polyolefin copolymer surfaces having enhanced binding density for binding biologically active agents and cells are provided. These plasma treated cyclic polyolefin copolymer surfaces may be further enhanced for binding biologically active agents or cells by the application of conjugates. Methods of making and characterizing treated polymer surfaces are also provided.
    Type: Application
    Filed: August 29, 2008
    Publication date: March 26, 2009
    Inventors: ANDREI G FADEEV, Santona Pal, David Michael Weber
  • Patent number: 6828062
    Abstract: The present invention relates to the electrochemistry of conjugated polymers in ionic liquids and the development and fabrication of long-lived, highly stable conjugated polymer electrochemical devices by using ionic liquids as electrolytes. More specially, the invention relates to the use of ionic liquids as electrolytes for the fabrication of long-lived, highly stable electrochemical actuators, electrochemical capacitors and electrochemical batteries having conjugated polymers as active electrodes as well as for the fabrication of long-lived, highly stable electrochromic devices with polyaniline and polythiophene as coloration materials.
    Type: Grant
    Filed: December 21, 2001
    Date of Patent: December 7, 2004
    Assignee: Santa Fe Science and Technology, Inc.
    Inventors: Wen Lu, Benjamin R. Mattes, Andrei G. Fadeev
  • Publication number: 20040119187
    Abstract: A composition of matter suitable for spinning polyaniline fiber, a method for spinning electrically conductive polyaniline fiber, a method for exchanging dopants in polyaniline fibers, and methods for dedoping and redoping polyaniline fibers are described.
    Type: Application
    Filed: September 26, 2003
    Publication date: June 24, 2004
    Inventors: Benjamin R. Mattes, Phillip N. Adams, Dali Yang, Lori A. Brown, Andrei G. Fadeev, Ian D. Norris
  • Patent number: 6667825
    Abstract: Electrochemical synthesis of conjugated polymers in ionic liquids, achievement of electroactivity and electrochroism of conjugated polymers in ionic liquids, and the use of the resulting conjugated polymers for the fabrication of electrochromic devices incorporating ionic liquids as electrolytes are described.
    Type: Grant
    Filed: January 3, 2002
    Date of Patent: December 23, 2003
    Assignee: Santa Fe Science and Technology, Inc.
    Inventors: Wen Lu, Benjamin R. Mattes, Andrei G. Fadeev, Baohua Qi
  • Publication number: 20020191270
    Abstract: Electrochemical synthesis of conjugated polymers in ionic liquids, achievement of electroactivity and electrochroism of conjugated polymers in ionic liquids, and the use of the resulting conjugated polymers for the fabrication of electrochromic devices incorporating ionic liquids as electrolytes are described.
    Type: Application
    Filed: January 3, 2002
    Publication date: December 19, 2002
    Inventors: Wen Lu, Benjamin R. Mattes, Andrei G. Fadeev, Baohua Qi
  • Publication number: 20020177039
    Abstract: The present invention relates to the electrochemistry of conjugated polymers in ionic liquids and the development and fabrication of long-lived, highly stable conjugated polymer electrochemical devices by using ionic liquids as electrolytes. More specially, the invention relates to the use of ionic liquids as electrolytes for the fabrication of long-lived, highly stable electrochemical actuators, electrochemical capacitors and electrochemical batteries having conjugated polymers as active electrodes as well as for the fabrication of long-lived, highly stable electrochromic devices with polyaniline and polythiophene as coloration materials.
    Type: Application
    Filed: December 21, 2001
    Publication date: November 28, 2002
    Inventors: Wen Lu, Benjamin R. Mattes, Andrei G. Fadeev
  • Patent number: 6423119
    Abstract: A novel process for the regeneration of PTMSP membranes is disclosed. The regeneration process includes washing a fouled PTMSP membrane with a solution containing at least about 50% butanol in water for a time sufficient to increase the flux and/or selectivity of the membrane. This regeneration process with a butanol containing solution significantly improves both the flux and selectivity of the PTMSP membrane and can regenerate the flux of the PTMSP membrane to the level of a previously unused membrane.
    Type: Grant
    Filed: July 7, 2000
    Date of Patent: July 23, 2002
    Assignee: The Board of Regents of the University of Nebraska
    Inventors: Andrei G. Fadeev, Michael M. Meagher