Patents by Inventor Andrei Gindilis

Andrei Gindilis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11939629
    Abstract: The current document relates generally to the field of nucleic-acid detection and, in particular, to a highly sensitive and specific nucleic-acid-detection method that includes hybridization of a specific nucleic-acid target to a recognition probe, subsequent specific cleavage of the double-stranded target-probe helix at a specific restriction site, and exponential amplification of the enzymatic cleavage accompanied by release of a molecular marker.
    Type: Grant
    Filed: August 1, 2018
    Date of Patent: March 26, 2024
    Inventor: Andrei Gindilis
  • Patent number: 11724243
    Abstract: There is disclosed an electrode array device having an adsorbed porous reaction layer for improved synthesis quality. The array comprises a plurality of electrodes on a substrate, wherein the electrodes are electronically connected to a computer control system. The array has an adsorbed porous reaction layer on the plurality of electrodes, wherein the adsorbed porous reaction layer comprises a chemical species having at least one hydroxyl group. In the preferred embodiment, the reaction layer is sucrose. A method for preparing an electrode array for improved synthesis quality is disclosed. The method comprises a cleaning method and a method of attachment of a reaction layer. The cleaning method comprises a plasma cleaning method and a chemical cleaning method. The reaction layer is attached after cleaning by exposing the microarray to a solution containing the chemical species having at least one hydroxyl group.
    Type: Grant
    Filed: May 2, 2019
    Date of Patent: August 15, 2023
    Assignee: CustomArray, Inc.
    Inventor: Andrei Gindilis
  • Publication number: 20190255504
    Abstract: There is disclosed an electrode array device having an adsorbed porous reaction layer for improved synthesis quality. The array comprises a plurality of electrodes on a substrate, wherein the electrodes are electronically connected to a computer control system. The array has an adsorbed porous reaction layer on the plurality of electrodes, wherein the adsorbed porous reaction layer comprises a chemical species having at least one hydroxyl group. In the preferred embodiment, the reaction layer is sucrose. A method for preparing an electrode array for improved synthesis quality is disclosed. The method comprises a cleaning method and a method of attachment of a reaction layer. The cleaning method comprises a plasma cleaning method and a chemical cleaning method. The reaction layer is attached after cleaning by exposing the microarray to a solution containing the chemical species having at least one hydroxyl group.
    Type: Application
    Filed: May 2, 2019
    Publication date: August 22, 2019
    Applicant: CUSTOMARRAY, INC.
    Inventor: Andrei Gindilis
  • Publication number: 20190185920
    Abstract: The current document relates generally to the field of nucleic-acid detection and, in particular, to a highly sensitive and specific nucleic-acid-detection method that includes hybridization of a specific nucleic-acid target to a recognition probe, subsequent specific cleavage of the double-stranded target-probe helix at a specific restriction site, and exponential amplification of the enzymatic cleavage accompanied by release of a molecular marker.
    Type: Application
    Filed: August 1, 2018
    Publication date: June 20, 2019
    Inventor: Andrei Gindilis
  • Patent number: 10286377
    Abstract: There is disclosed an electrode array device having an adsorbed porous reaction layer for improved synthesis quality. The array comprises a plurality of electrodes on a substrate, wherein the electrodes are electronically connected to a computer control system. The array has an adsorbed porous reaction layer on the plurality of electrodes, wherein the adsorbed porous reaction layer comprises a chemical species having at least one hydroxyl group. In the preferred embodiment, the reaction layer is sucrose. A method for preparing an electrode array for improved synthesis quality is disclosed. The method comprises a cleaning method and a method of attachment of a reaction layer. The cleaning method comprises a plasma cleaning method and a chemical cleaning method. The reaction layer is attached after cleaning by exposing the microarray to a solution containing the chemical species having at least one hydroxyl group.
    Type: Grant
    Filed: May 15, 2016
    Date of Patent: May 14, 2019
    Assignee: CustomArray, Inc.
    Inventor: Andrei Gindilis
  • Patent number: 9339782
    Abstract: There is disclosed an electrode array device having an adsorbed porous reaction layer for improved synthesis quality. The array comprises a plurality of electrodes on a substrate, wherein the electrodes are electronically connected to a computer control system. The array has an adsorbed porous reaction layer on the plurality of electrodes, wherein the adsorbed porous reaction layer comprises a chemical species having at least one hydroxyl group. In the preferred embodiment, the reaction layer is sucrose. A method for preparing an electrode array for improved synthesis quality is disclosed. The method comprises a cleaning method and a method of attachment of a reaction layer. The cleaning method comprises a plasma cleaning method and a chemical cleaning method. The reaction layer is attached after cleaning by exposing the microarray to a solution containing the chemical species having at least one hydroxyl group.
    Type: Grant
    Filed: November 18, 2013
    Date of Patent: May 17, 2016
    Assignee: CustomArray, Inc.
    Inventor: Andrei Gindilis
  • Publication number: 20120245049
    Abstract: A method of performing a fluid-material assay employing a device including at least one active pixel having a sensor with an assay site functionalized for selected fluid-assay material. The method includes exposing the pixel's sensor assay site to such material, and in conjunction with such exposing, and employing the active nature of the pixel, remotely requesting from the pixel's sensor assay site an assay-result output report. The method further includes, in relation to the employing step, creating, relative to the sensor's assay site in the at least one pixel, a predetermined, pixel-specific electromagnetic field environment.
    Type: Application
    Filed: June 5, 2012
    Publication date: September 27, 2012
    Inventors: John W. Hartzell, Pooran Chandra Joshi, Paul J. Schuele, Andrei Gindilis
  • Patent number: 8232109
    Abstract: A method of performing a fluid-material assay employing a device including at least one active pixel having a sensor with an assay site functionalized for selected fluid-assay material. The method includes exposing the pixel's sensor assay site to such material, and in conjunction with such exposing, and employing the active nature of the pixel, remotely requesting from the pixel's sensor assay site an assay-result output report. The method further includes, in relation to the employing step, creating, relative to the sensor's assay site in the at least one pixel, a predetermined, pixel-specific electromagnetic field environment.
    Type: Grant
    Filed: July 31, 2007
    Date of Patent: July 31, 2012
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: John W. Hartzell, Pooran Chandra Joshi, Paul J. Schuele, Andrei Gindilis
  • Publication number: 20080085559
    Abstract: A method of performing a fluid-material assay employing a device including at least one active pixel having a sensor with an assay site functionalized for selected fluid-assay material. The method includes exposing the pixel's sensor assay site to such material, and in conjunction with such exposing, and employing the active nature of the pixel, remotely requesting from the pixel's sensor assay site an assay-result output report. The method further includes, in relation to the employing step, creating, relative to the sensor's assay site in the at least one pixel, a predetermined, pixel-specific electromagnetic field environment.
    Type: Application
    Filed: July 31, 2007
    Publication date: April 10, 2008
    Inventors: John W. Hartzell, Pooran Chandra Joshi, Paul J. Schuele, Andrei Gindilis
  • Publication number: 20070037169
    Abstract: The present invention provides a method for selective dehybridization by electrochemically-generated (ECG) reagent on an electrode microarray. The ECG reagent is generated by activation of selected electrodes. Activation alters pH in the vicinity of only the selected electrodes. In one embodiment, the increase or decrease in pH is sufficient to cause dehybridization of an oligonucleotide duplex at the selected electrodes. In another embodiment, the increase or decrease in pH is sufficient to prevent chemical dehybridization at the selected electrodes. The dehybridized single stranded target oligonucleotide may be recovered and amplified by PCR.
    Type: Application
    Filed: August 9, 2005
    Publication date: February 15, 2007
    Applicant: COMBIMATRIX CORPORATION
    Inventors: John Cooper, Andrei Gindilis
  • Publication number: 20060102471
    Abstract: There is disclosed an electrode array device having an adsorbed porous reaction layer for improved synthesis quality. The array comprises a plurality of electrodes on a substrate, wherein the electrodes are electronically connected to a computer control system. The array has an adsorbed porous reaction layer on the plurality of electrodes, wherein the adsorbed porous reaction layer comprises a chemical species having at least one hydroxyl group. In the preferred embodiment, the reaction layer is sucrose. A method for preparing an electrode array for improved synthesis quality is disclosed. The method comprises a cleaning method and a method of attachment of a reaction layer. The cleaning method comprises a plasma cleaning method and a chemical cleaning method. The reaction layer is attached after cleaning by exposing the microarray to a solution containing the chemical species having at least one hydroxyl group.
    Type: Application
    Filed: November 18, 2004
    Publication date: May 18, 2006
    Inventors: Karl Maurer, John Cooper, Michael Strathmann, Andrei Gindilis