Patents by Inventor Andrei S. Merenov

Andrei S. Merenov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9908839
    Abstract: A process comprising reacting a mono- or di-carboxylic acid and/or acid anhydride with a glycol ether in the presence of phosphoric acid to produce a glycol ether ester product having low color and low VOC content.
    Type: Grant
    Filed: June 18, 2015
    Date of Patent: March 6, 2018
    Assignee: Dow Global Technologies LLC
    Inventors: George J. Frycek, Andrei S. Merenov, Felipe A. Donate, Edward D. Daugs, Julie L. Maurer, Rebecca J. Wachowicz, Jason L. Trumble
  • Publication number: 20170113997
    Abstract: A process comprising reacting a mono- or di-carboxylic acid and/or acid anhydride with a glycol ether in the presence of phosphoric acid to produce a glycol ether ester product having low color and low VOC content.
    Type: Application
    Filed: June 18, 2015
    Publication date: April 27, 2017
    Inventors: George J. Frycek, Andrei S. Merenov, Felipe A. Donate, Edward D. Daugs, Julie L. Maurer, Rebecca J. Wachowicz, Jason L. Trumble
  • Patent number: 9481629
    Abstract: A process for the production of 2-butoxyethyl benzoate from benzoic acid and 2-butoxy ethanol wherein at least a portion of the crude reaction product is fed to a distillation column comprising a dividing wall or a pasteurizing section.
    Type: Grant
    Filed: September 24, 2013
    Date of Patent: November 1, 2016
    Assignee: Dow Global Technologies LLC
    Inventors: Andrei S. Merenov, Edward D. Daugs, Patrick Ho Sing Au-Yeung, Jason L. Trumble
  • Publication number: 20150274635
    Abstract: A process for the production of 2-butoxyethyl benzoate from benzoic acid and 2-butoxy ethanol wherein at least a portion of the crude reaction product is fed to a distillation column comprising a dividing wall or a pasteurizing section.
    Type: Application
    Filed: September 24, 2013
    Publication date: October 1, 2015
    Inventors: Andrei S. Merenov, Edward D. Daugs, Patrick Ho Sing Au-Yeung, Jason L. Trumble
  • Patent number: 9090540
    Abstract: The present invention a process and apparatus for the production of methylene diphenyl diisocyanate (MDI) isomer mixtures with a low 2,2?-MDI isomer content and a high 2,4?-MDI isomer content. The resulting mixtures have an increased reactivity and are acceptable in food grade application due to the reduction in primary aromatic amines formed during the curing process. The process and apparatus also include controlling the amount of 4,4?-MDI, which is the most reactive isomer in the mixture allowing use in a wide variety of applications.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: July 28, 2015
    Assignee: Dow Global Technologies LLC
    Inventors: Andrei S. Merenov, Dennis W. Jewell, Paul A. Gillis, Gerard I. Jansma, Ashley W. Breed, John J. Anderson, Daniel J. Reed
  • Patent number: 9080005
    Abstract: The present invention includes a process and apparatus for the production of methylene diphenyl diisocyanate (MDI) isomer mixtures with a low 2,2?-MDI isomer content and a high 2,4?-MDI isomer content. The resulting mixtures have an increased reactivity and are acceptable in food grade application due to the reduction in primary aromatic amines formed during the curing process. The process and apparatus also include controlling the amount of 4,4?-MDI, which is the most reactive isomer in the mixture allowing use in a wide variety of applications.
    Type: Grant
    Filed: November 19, 2012
    Date of Patent: July 14, 2015
    Assignee: Dow Global Technologies LLC
    Inventors: Andrei S. Merenov, Gerard I. Jansma, Paul A. Gillis
  • Patent number: 8926916
    Abstract: A process and apparatus for recovering dichlorohydrins from a mixture comprising dichlorohydrins, one or more compounds selected from esters of dichlorohydrins, monochlorohydrins and/or esters thereof, and multihydroxylated-aliphatic hydrocarbon compounds and/or esters thereof, and optionally one or more substances comprising water, chlorinating agents, catalysts and/or esters of catalysts is disclosed. The mixture is stripped to recover dichlorohydrin(s) while distilling or fractionating the mixture to separate a lower boiling fraction comprising dichlorohydrin(s) from the mixture in one step. Advantages include more efficient recovery of dichlorohydrins for a given distillation column, less waste due to avoiding the conditions conducive to the formation of heavy byproducts, and reduced capital investment in recovery equipment.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: January 6, 2015
    Assignee: Dow Global Technologies LLC
    Inventors: Danil Tirtowidjojo, Andrei S. Merenov, Christian D. Kneupper, Bruce D. Hook, Anil Mehta
  • Patent number: 8901346
    Abstract: The present disclosure relates, according to some embodiments, to apparatus, systems, and/or methods for fractionating a feed mixture comprising, for example, one or more isocyanates, light components, solvents and/or heavier components. In some embodiments, fractionating an isocyanate feed mixture may comprise distilling the feed mixture in a non-adiabatic fractionating apparatus comprising a prefractionating section and/or column and a main section and/or column, which comprises a rectification section, a side section, and a stripping section. For example, isocyanates may be separated from light component(s), solvent(s) and/or heavier component(s). A fractionating apparatus may be configured and arranged, in some embodiments, as a dividing wall column. According to some embodiments of the disclosure, apparatus, systems, and/or methods may be energy efficient and/or may have a broad operating range.
    Type: Grant
    Filed: October 1, 2009
    Date of Patent: December 2, 2014
    Assignee: Dow Global Technologies LLC
    Inventors: Andrei S. Merenov, Luca Balbo, Douglas A. Stallard, John G. Pendergrast, Jr., Joerg-Peter Gehrke, Amilcar R. Collado, David D. Hibbitts
  • Publication number: 20140264163
    Abstract: The present invention includes a process and apparatus for the production of methylene diphenyl diisocyanate (MDI) isomer mixtures with a low 2,2?-MDI isomer content and a high 2,4?-MDI isomer content. The resulting mixtures have an increased reactivity and are acceptable in food grade application due to the reduction in primary aromatic amines formed during the curing process. The process and apparatus also include controlling the amount of 4,4?-MDI, which is the most reactive isomer in the mixture allowing use in a wide variety of applications.
    Type: Application
    Filed: November 19, 2012
    Publication date: September 18, 2014
    Applicant: Dow Global Technologies LLC
    Inventors: Andrei S. Merenov, Gerard I. Jansma, Paul A. Gillis
  • Patent number: 8664453
    Abstract: A process and apparatus for recovering dichlorohydrins from a mixture comprising dichlorohydrins, one or more compounds selected from esters of dichlorohydrins, monochlorohydrins and/or esters thereof, and multihydroxylated-aliphatic hydrocarbon compounds and/or esters thereof, and optionally one or more substances comprising water, chlorinating agents, catalysts and/or esters of catalysts is disclosed. The mixture is distilled or fractionated to separate a lower boiling fraction comprising dichlorohydrin(s) from the mixture to form a higher boiling fraction comprising the residue of the distillation or fractionation. The higher boiling fraction is stripped to recover remaining dichlorohydrins. Advantages include more efficient recovery of dichlorohydrins for a given distillation column, less waste due to avoiding the conditions conducive to the formation of heavy byproducts, and reduced capital investment in recovery equipment.
    Type: Grant
    Filed: April 11, 2008
    Date of Patent: March 4, 2014
    Assignee: Dow Global Technologies Inc.
    Inventors: Danil Tirtowidjojo, Andrei S. Merenov, Christian D. Kneupper, Bruce D. Hook, Anil I. Mehta
  • Patent number: 8629305
    Abstract: A process and apparatus for recovering dichlorohydrins from a mixture comprising dichlorohydrins, water, one or more compounds selected from esters of dichlorohydrins, monochlorohydrins and/or esters thereof, and multihydroxylated-aliphatic hydrocarbon compounds and/or esters thereof, and optionally one or more substances comprising chlorinating agents, catalysts and/or esters of catalysts is disclosed. A liquid aqueous phase is recycled to the distillation column while distilling or fractionating the mixture to separate dichlorohydrin(s) and water from the mixture. Advantages include more efficient recovery of dichlorohydrins for a given distillation column, less waste due to avoiding the conditions conducive to the formation of heavy byproducts, and reduced capital investment in recovery equipment.
    Type: Grant
    Filed: April 11, 2008
    Date of Patent: January 14, 2014
    Assignee: Dow Global Technologies Inc
    Inventors: Danil Tirtowidjojo, Andrei S. Merenov, Christian D. Kneupper, Bruce D. Hook, Anil J. Mehta
  • Publication number: 20130172604
    Abstract: The present invention a process and apparatus for the production of methylene diphenyl diisocyanate (MDI) isomer mixtures with a low 2,2?-MDI isomer content and a high 2,4?-MDI isomer content. The resulting mixtures have an increased reactivity and are acceptable in food grade application due to the reduction in primary aromatic amines formed during the curing process. The process and apparatus also include controlling the amount of 4,4?-MDI, which is the most reactive isomer in the mixture allowing use in a wide variety of applications.
    Type: Application
    Filed: September 20, 2011
    Publication date: July 4, 2013
    Applicant: DOW GLOBAL TECHNOLOGIES LLC
    Inventors: Andrei S. Merenov, Dennis W. Jewell, Paul A. Gillis, Gerard I. Jansma, Ashley W. Breed, John J. Anderson, Daniel J. Reed
  • Patent number: 8420870
    Abstract: A process and apparatus for recovering dichlorohydrins from a mixture comprising dichlorohydrins, one or more compounds selected from esters of dichlorohydrins, monochlorohydrins and/or esters thereof, and multihydroxylated-aliphatic hydrocarbon compounds and/or esters thereof, and optionally one or more substances comprising water, chlorinating agents, catalysts and/or esters of catalysts is disclosed. The mixture is stripped to recover dichlorohydrin(s) while distilling or fractionating the mixture to separate a lower boiling fraction comprising dichlorohydrin(s) from the mixture in one step. Advantages include more efficient recovery of dichlorohydrins for a given distillation column, less waste due to avoiding the conditions conducive to the formation of heavy byproducts, and reduced capital investment in recovery equipment.
    Type: Grant
    Filed: April 11, 2008
    Date of Patent: April 16, 2013
    Assignee: Dow Global Technologies LLC
    Inventors: Danil Tirtowidjojo, Andrei S. Merenov, Christian D. Kneupper, Bruce D. Hook, Anil J. Mehta
  • Publication number: 20110178328
    Abstract: The present disclosure relates, according to some embodiments, to apparatus, systems, and/or methods for fractionating a feed mixture comprising, for example, one or more isocyanates, light components, solvents and/or heavier components. In some embodiments, fractionating an isocyanate feed mixture may comprise distilling the feed mixture in a non-adiabatic fractionating apparatus comprising a prefractionating section and/or column and a main section and/or column, which comprises a rectification section, a side section, and a stripping section. For example, isocyanates may be separated from light component(s), solvent(s) and/or heavier component(s). A fractionating apparatus may be configured and arranged, in some embodiments, as a dividing wall column. According to some embodiments of the disclosure, apparatus, systems, and/or methods may be energy efficient and/or may have a broad operating range.
    Type: Application
    Filed: October 1, 2009
    Publication date: July 21, 2011
    Applicant: DOW GLOBAL TECHNOLOGIES LLC
    Inventors: Andrei S. Merenov, Luca Balbo, Douglas A. Stallard, John G. Pendergast, Joerg-Peter Gehrke, Amilcar R. Collado, David D. Hibbitts
  • Publication number: 20110172458
    Abstract: The present disclosure relates, according to some embodiments, to apparatus, systems, and/or methods for fractionating a feed mixture comprising, for example, one or more isocyanates, light components, solvents and/or heavier components. In some embodiments, fractionating an isocyanate feed mixture may comprise distilling the feed mixture in a non-adiabatic fractionating apparatus comprising a prefractionating section and/or column and a main section and/or column, which comprises a rectification section, a side section, and a stripping section. For example, isocyanates may be separated from light component(s), solvent(s) and/or heavier component(s). A fractionating apparatus may be configured and arranged, in some embodiments, as a dividing wall column. According to some embodiments of the disclosure, apparatus, systems, and/or methods may be energy efficient and/or may have a broad operating range.
    Type: Application
    Filed: October 1, 2009
    Publication date: July 14, 2011
    Applicant: DOW GLOBAL TECHNOLOGIES LLC
    Inventors: Andrei S. Merenov, Luca Balbo, Douglas A. Stallard, John G. Pendergast, JR., Joerg-Peter Gehrke, Amilcar R. Collado, David D. Hibbitts
  • Publication number: 20110152580
    Abstract: A process for converting multihydroxylated-aliphatic hydrocarbon compound(s) and/or ester(s) thereof to chlorohydrins and/or esters thereof is disclosed in which one or more of multihydroxylated-aliphatic hydrocarbon compound(s) and/or ester(s) thereof and/or monochlorohydrin(s) and/or ester(s) thereof with at least one chlorinating feed stream comprising at least one chlorinating agent and at least one impurity having a boiling point below the boiling point of the chlorohydrin product having the lowest boiling under hydrochlorination conditions, optionally in the presence of water, one or more catalyst(s), and/or one or more heavy byproduct(s) in a reaction vessel under hydrochlorination conditions, wherein the liquid-phase reaction mixture is maintained at a temperature below the boiling point of the chlorohydrin product having the lowest boiling point under hydrochlorination conditions and greater than the boiling point(s) of the at least one impurity and a vapor phase vent stream comprising the at least o
    Type: Application
    Filed: April 11, 2008
    Publication date: June 23, 2011
    Inventors: Bruce D. Hook, Anna Forlin, Andrei S. Merenov, Danil Tirtowidjolo, Anil J. Mehta, Jan W. Verwijs, Aaltje Verwijs-van den Brink, Lena Verwijs, Hendrika Gerrita Verwijs, Wilma Hensen
  • Publication number: 20100137652
    Abstract: A process and apparatus for recovering dichlorohydrins from a mixture comprising dichlorohydrins, one or more compounds selected from esters of dichlorohydrins, monochlorohydrins and/or esters thereof, and multihydroxylated-aliphatic hydrocarbon compounds and/or esters thereof, and optionally one or more substances comprising water, chlorinating agents, catalysts and/or esters of catalysts is disclosed. The mixture is distilled or fractionated to separate a lower boiling fraction comprising dichlorohydrin(s) from the mixture to form a higher boiling fraction comprising the residue of the distillation or fractionation. The higher boiling fraction is stripped to recover remaining dichlorohydrins. Advantages include more efficient recovery of dichlorohydrins for a given distillation column, less waste due to avoiding the conditions conducive to the formation of heavy byproducts, and reduced capital investment in recovery equipment.
    Type: Application
    Filed: April 11, 2008
    Publication date: June 3, 2010
    Inventors: Danil Tirtowidjojo, Andrei S. Merenov, Christian D. Kneupper, Bruce D. Hook, Anil I. Mehta
  • Publication number: 20100137653
    Abstract: A process and apparatus for recovering dichlorohydrins from a mixture comprising dichlorohydrins, one or more compounds selected from esters of dichlorohydrins, monochlorohydrins and/or esters thereof, and multihydroxylated-aliphatic hydrocarbon compounds and/or esters thereof, and optionally one or more substances comprising water, chlorinating agents, catalysts and/or esters of catalysts is disclosed. The mixture is stripped to recover dichlorohydrin(s) while distilling or fractionating the mixture to separate a lower boiling fraction comprising dichlorohydrin(s) from the mixture in one step. Advantages include more efficient recovery of dichlorohydrins for a given distillation column, less waste due to avoiding the conditions conducive to the formation of heavy byproducts, and reduced capital investment in recovery equipment.
    Type: Application
    Filed: April 11, 2008
    Publication date: June 3, 2010
    Inventors: Danil Tirtowidjojo, Andrei S. Merenov, Christian D. Kneupper, Bruce D. Hook, Anil J. Mehta
  • Publication number: 20100105965
    Abstract: A process and apparatus for recovering dichlorohydrins from a mixture comprising dichlorohydrins, water, one or more compounds selected from esters of dichlorohydrins, monochlorohydrins and/or esters thereof, and multihydroxylated-aliphatic hydrocarbon compounds and/or esters thereof, and optionally one or more substances comprising chlorinating agents, catalysts and/or esters of catalysts is disclosed. A liquid aqueous phase is recycled to the distillation column while distilling or fractionating the mixture to separate dichlorohydrin(s) and water from the mixture. Advantages include more efficient recovery of dichlorohydrins for a given distillation column, less waste due to avoiding the conditions conducive to the formation of heavy byproducts, and reduced capital investment in recovery equipment.
    Type: Application
    Filed: April 11, 2008
    Publication date: April 29, 2010
    Inventors: Danil Tirtowidjojo, Andrei S. Merenov, Christian D. Kneupper, Bruce D. Hook, Anil J. Mehta