Patents by Inventor Andrei Tristan Evulet

Andrei Tristan Evulet has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10161310
    Abstract: A turbine power generation system with enhanced stabilization of refractory carbides provided by hydrocarbon from high carbon activity gases is disclosed. The disclosure also includes a method of using high carbon activity gases to stabilize hot gas path components.
    Type: Grant
    Filed: February 1, 2016
    Date of Patent: December 25, 2018
    Assignee: General Electric Company
    Inventors: William Paul Minnear, Ronald Scott Bunker, Narendra Digamber Joshi, Andrei Tristan Evulet
  • Patent number: 9708977
    Abstract: A system includes a turbine having an exhaust flow path through a plurality of turbine stages, wherein the plurality of turbine stages is driven by combustion products flowing through the exhaust flow path, at least one main combustor disposed upstream from the turbine, wherein the at least one main combustor is configured to combust a fuel with a first oxidant and an exhaust gas to generate the combustion products, at least one reheat combustor disposed in or between turbine stages of the turbine, wherein the at least one reheat combustor is configured to reheat the combustion products by adding a second oxidant to react with unburnt fuel in the combustion products, and an exhaust gas compressor, wherein the exhaust gas compressor is configured to compress and route the exhaust gas from the turbine to the at least one main combustor along an exhaust recirculation path.
    Type: Grant
    Filed: October 30, 2013
    Date of Patent: July 18, 2017
    Assignees: General Electric Company, ExxonMobil Upstream Research Company
    Inventors: John Farrior Woodall, Andrei Tristan Evulet, Samuel David Draper
  • Patent number: 9404418
    Abstract: A turbine system is provided. The turbine system includes a compressor configured to compress ambient air and a combustor configured to receive compressed air from the compressor, and to combust a fuel stream to generate an exhaust gas. The turbine system also includes a turbine for receiving the exhaust gas from the combustor to generate electricity; wherein a first portion of the exhaust gas is mixed with the ambient air to form a low-oxygen air stream, and wherein the low-oxygen air stream is compressed using the compressor, and is directed to the combustor for combusting the fuel stream to generate a low-NOx exhaust gas.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: August 2, 2016
    Assignee: General Electric Company
    Inventors: Ahmed Mostafa ElKady, Andrei Tristan Evulet
  • Publication number: 20160208700
    Abstract: A turbine power generation system with enhanced stabilization of refractory carbides provided by hydrocarbon from high carbon activity gases is disclosed. The disclosure also includes a method of using high carbon activity gases to stabilize hot gas path components.
    Type: Application
    Filed: February 1, 2016
    Publication date: July 21, 2016
    Inventors: William Paul Minnear, Ronald Scott Bunker, Narendra Digamber Joshi, Andrei Tristan Evulet
  • Patent number: 9366184
    Abstract: A gas turbine engine and method for operating a gas turbine engine includes compressing an air stream in a compressor and combusting the compressed air stream to generate a post combustion gas. The post combustion gas is expanded in a first turbine. The expanded combustion gas exiting the first turbine is split into a first stream, a second stream and a third stream in a splitting zone including one or more aerodynamically shaped flow diverters. The first stream of the expanded combustion gas is combusted in a reheat combustor. An outer liner and flame stabilizer of the reheat combustor are cooled using the second stream of the expanded combustion gas. An inner liner of the reheat combustor is cooled using the third stream of the expanded combustion gas and a portion of the second stream of the expanded combustion gas passing through the one or more flame stabilizers.
    Type: Grant
    Filed: June 18, 2013
    Date of Patent: June 14, 2016
    Assignee: General Electric Company
    Inventors: Ronald Scott Bunker, Andrei Tristan Evulet
  • Publication number: 20160090912
    Abstract: An inlet particle separator system coupled to an engine having an engine exhaust is presented. The inlet particle separator system includes an axial flow separator for separating air from an engine inlet into a first flow of substantially contaminated air and a second flow of substantially clean air. The inlet particle separator system further includes a scavenge subsystem in flow communication with the axial flow separator for receiving the first flow of substantially contaminated air. Furthermore, the inlet particle separator system includes a fluidic device including a first inlet and an exhaust, where the fluidic device is configured to accelerate the first flow of substantially contaminated air through the scavenge subsystem and emit the first flow of substantially contaminated air via the exhaust of the fluidic device, wherein the exhaust of the fluidic device is different from an exhaust of the engine.
    Type: Application
    Filed: December 4, 2015
    Publication date: March 31, 2016
    Inventors: Narendra Digamber Joshi, Ross Hartley Kenyon, Andrei Tristan Evulet
  • Patent number: 9284231
    Abstract: A turbine power generation system with enhanced stabilization of refractory carbides provided by hydrocarbon from high carbon activity gases is disclosed. The disclosure also includes a method of using high carbon activity gases to stabilize hot gas path components.
    Type: Grant
    Filed: December 16, 2011
    Date of Patent: March 15, 2016
    Assignee: General Electric Company
    Inventors: William Paul Minnear, Ronald Scott Bunker, Narendra Digamber Joshi, Andrei Tristan Evulet
  • Publication number: 20140366550
    Abstract: A gas turbine engine and method for operating a gas turbine engine includes compressing an air stream in a compressor and combusting the compressed air stream to generate a post combustion gas. The post combustion gas is expanded in a first turbine. The expanded combustion gas exiting the first turbine is split into a first stream, a second stream and a third stream in a splitting zone including one or more aerodynamically shaped flow diverters. The first stream of the expanded combustion gas is combusted in a reheat combustor. An outer liner and flame stabilizer of the reheat combustor are cooled using the second stream of the expanded combustion gas. An inner liner of the reheat combustor is cooled using the third stream of the expanded combustion gas and a portion of the second stream of the expanded combustion gas passing through the one or more flame stabilizers.
    Type: Application
    Filed: June 18, 2013
    Publication date: December 18, 2014
    Inventors: Ronald Scott Bunker, Andrei Tristan Evulet
  • Patent number: 8899494
    Abstract: In certain embodiments, a fuel injector includes a wall separating a fuel passage from an air passage. The fuel injector also includes a fuel injection port extending from a first side of the wall to a second side of the wall for injecting a flow of fuel from the fuel passage into a flow of air in the air passage. In addition, the fuel injector includes first and second feedback lines extending from a downstream end of the fuel injection port to an upstream end of the fuel injection port. The first and second feedback lines are disposed on opposite sides of the fuel injection port. In addition, the first and second feedback lines are disposed entirely within the wall.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: December 2, 2014
    Assignee: General Electric Company
    Inventors: Ronald Scott Bunker, Andrei Tristan Evulet
  • Patent number: 8850789
    Abstract: A power generation system includes a gas turbine system. The turbine system includes a combustion chamber configured to combust a fuel stream a compressor configured to receive a feed oxidant stream and supply a compressed oxidant to the combustion chamber and an expander configured to receive a discharge from the combustion chamber and generate an exhaust comprising carbon dioxide and electrical energy. The system further includes a retrofittable exhaust gas recirculation system including a splitter configured to split the exhaust into a first split stream and a second split stream, a heat recovery steam generator configured to receive the first split stream and generate a cooled first split stream and a purification system configured to receive the first cooled split stream and the second split stream and generate a recycle stream, wherein the recycle stream is mixed with the fresh oxidant to generate the feed oxidant stream.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: October 7, 2014
    Assignee: General Electric Company
    Inventors: Andrei Tristan Evulet, Ahmed Mostafa ElKady, Michael John Bowman
  • Publication number: 20140182299
    Abstract: A system includes a turbine having an exhaust flow path through a plurality of turbine stages, wherein the plurality of turbine stages is driven by combustion products flowing through the exhaust flow path, at least one main combustor disposed upstream from the turbine, wherein the at least one main combustor is configured to combust a fuel with a first oxidant and an exhaust gas to generate the combustion products, at least one reheat combustor disposed in or between turbine stages of the turbine, wherein the at least one reheat combustor is configured to reheat the combustion products by adding a second oxidant to react with unburnt fuel in the combustion products, and an exhaust gas compressor, wherein the exhaust gas compressor is configured to compress and route the exhaust gas from the turbine to the at least one main combustor along an exhaust recirculation path.
    Type: Application
    Filed: October 30, 2013
    Publication date: July 3, 2014
    Applicant: General Electric Company
    Inventors: John Farrior Woodall, Andrei Tristan Evulet, Samuel David Draper
  • Patent number: 8616002
    Abstract: Methods and systems are provided for premixing combustion fuel and air within gas turbines. In one embodiment, a combustor includes an upstream mixing panel configured to direct compressed air and combustion fuel through a premixing zone to form a fuel-air mixture. The combustor also includes a downstream mixing panel configured to mix additional combustion fuel with the fuel-air mixture to form a combustion mixture.
    Type: Grant
    Filed: July 23, 2009
    Date of Patent: December 31, 2013
    Assignee: General Electric Company
    Inventors: Gilbert Otto Kraemer, Balachandar Varatharajan, Andrei Tristan Evulet, Ertan Yilmaz, Benjamin Paul Lacy
  • Publication number: 20130255267
    Abstract: A power generation system and method of generating power with reduced NOx emission includes a gas turbine system. The turbine system includes a compressor configured to receive a feed oxidant stream and supply a compressed oxidant stream to a combustion chamber and an expander configured to receive a discharge stream from the combustion chamber and generate an exhaust stream comprising carbon dioxide and electrical energy. The system further includes an exhaust gas recirculation system configured to generate a recycle stream, wherein the recycle stream is mixed with a fresh oxidant to generate the feed oxidant stream. The exhaust gas recirculation system includes an exhaust gas recirculation control loop to control a pilot ratio (diffusion to total fuel ratio) based on received feedback related to combustion parameters. The control loop configured to control the pilot ratio required to keep NOx in its minimum ratios with improved flame stability.
    Type: Application
    Filed: March 30, 2012
    Publication date: October 3, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Ahmed Mostafa ElKady, Andrei Tristan Evulet, Anthony John Dean
  • Publication number: 20130152599
    Abstract: A turbine power generation system with enhanced stabilization of refractory carbides provided by hydrocarbon from high carbon activity gases is disclosed. The disclosure also includes a method of using high carbon activity gases to stabilize hot gas path components.
    Type: Application
    Filed: December 16, 2011
    Publication date: June 20, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: William Paul MINNEAR, Ronald Scott BUNKER, Narendra Digamber JOSHI, Andrei Tristan EVULET
  • Patent number: 8464538
    Abstract: A trapped vortex combustor includes a trapped vortex cavity having a first surface and a second surface. A plurality of fluidic mixers are disposed circumferentially along the first surface and the second surface of the trapped vortex cavity. At least one fluidic mixer includes a first open end receiving a first fluid stream, a coanda profile in the proximity of the first open end, a fuel plenum to discharge a fuel stream over the coanda profile, and a second open end for receiving the mixture of the first fluid stream and the fuel stream and discharging the mixture of the first fluid stream and the fuel stream in the trapped vortex cavity. The coanda profile is configured to enable attachment of the fuel stream to the coanda profile to form a boundary layer of the fuel stream and, to entrain the incoming first fluid stream to the boundary layer of the fuel stream to form a mixture of the first fluid stream and the fuel stream.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: June 18, 2013
    Assignee: General Electric Company
    Inventors: Andrei Tristan Evulet, Gustavo Adolfo Ledezma, Corey Bourassa
  • Publication number: 20120248217
    Abstract: In certain embodiments, a fuel injector includes a wall separating a fuel passage from an air passage. The fuel injector also includes a fuel injection port extending from a first side of the wall to a second side of the wall for injecting a flow of fuel from the fuel passage into a flow of air in the air passage. In addition, the fuel injector includes first and second feedback lines extending from a downstream end of the fuel injection port to an upstream end of the fuel injection port. The first and second feedback lines are disposed on opposite sides of the fuel injection port. In addition, the first and second feedback lines are disposed entirely within the wall.
    Type: Application
    Filed: March 31, 2011
    Publication date: October 4, 2012
    Applicant: General Electric Company
    Inventors: Ronald Scott Bunker, Andrei Tristan Evulet
  • Patent number: 8266911
    Abstract: A premixing device is provided. The premixing device includes an air inlet configured to introduce compressed air into a mixing chamber of the premixing device and a fuel plenum configured to provide a fuel to the mixing chamber via a circumferential slot and over a pre-determined profile adjacent the fuel plenum, wherein the pre-determined profile facilitates attachment of the fuel to the profile to form a fuel boundary layer and to entrain incoming air through the fuel boundary layer to facilitate mixing of fuel and air in the mixing chamber.
    Type: Grant
    Filed: November 14, 2005
    Date of Patent: September 18, 2012
    Assignee: General Electric Company
    Inventor: Andrei Tristan Evulet
  • Publication number: 20120167570
    Abstract: Methods and devices useable in turbo-engines premixing of compressed air and fuel are provided. A premixer has a mixing part configured to receive a gas flow input in a flow direction and fluid fuel injected substantially perpendicular to the flow direction. The mixing part has a rim configured to define a substantially cylindrical shape. The mixing part also has a swirler with (i) a center body located substantially in a middle of the cylindrical shape along the flow direction, and (ii) a set of vanes extending from the center body towards the rim, the vanes being configured to determine a rotation motion inside a flow that includes the received gas flow and the injected fuel when the flow passes through the mixing part, at least some of the vanes having a trailing edge with a waving profile configured to generate mixing zones inside the flow thereafter.
    Type: Application
    Filed: December 16, 2011
    Publication date: July 5, 2012
    Inventor: Andrei Tristan EVULET
  • Publication number: 20120151932
    Abstract: A trapped vortex combustor includes a trapped vortex cavity having a first surface and a second surface. A plurality of fluidic mixers are disposed circumferentially along the first surface and the second surface of the trapped vortex cavity. At least one fluidic mixer includes a first open end receiving a first fluid stream, a coanda profile in the proximity of the first open end, a fuel plenum to discharge a fuel stream over the coanda profile, and a second open end for receiving the mixture of the first fluid stream and the fuel stream and discharging the mixture of the first fluid stream and the fuel stream in the trapped vortex cavity. The coanda profile is configured to enable attachment of the fuel stream to the coanda profile to form a boundary layer of the fuel stream and, to entrain the incoming first fluid stream to the boundary layer of the fuel stream to form a mixture of the first fluid stream and the fuel stream.
    Type: Application
    Filed: December 17, 2010
    Publication date: June 21, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Andrei Tristan Evulet, Gustavo Adolfo Ledezma, Corey Bourassa
  • Publication number: 20120151935
    Abstract: A method for operating a gas turbine engine includes compressing an air stream in a compressor and generating a post combustion gas by combusting a compressed air stream exiting from the compressor in a combustor. The post combustion gas is expanded in a first turbine. The expanded combustion gas exiting from the first turbine is split into a first stream and a second stream. The first stream of the expanded combustion gas is combusted in a reheat combustor. The reheat combustor is cooled using the second stream of the expanded combustion gas.
    Type: Application
    Filed: December 17, 2010
    Publication date: June 21, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Ronald Scott Bunker, Andrei Tristan Evulet