Patents by Inventor Andrei Veldman

Andrei Veldman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11913874
    Abstract: The system includes a modulatable illumination source configured to illuminate a surface of a sample disposed on a sample stage, a detector configured to detect illumination emanating from a surface of the sample, illumination optics configured to direct illumination from the modulatable illumination source to the surface of the sample, collection optics configured to direct illumination from the surface of the sample to the detector, and a modulation control system communicatively coupled to the modulatable illumination source, wherein the modulation control system is configured to modulate a drive current of the modulatable illumination source at a selected modulation frequency suitable for generating illumination having a selected coherence feature length. In addition, the present invention includes the time-sequential interleaving of outputs of multiple light sources to generate periodic pulse trains for use in multi-wavelength time-sequential optical metrology.
    Type: Grant
    Filed: April 5, 2021
    Date of Patent: February 27, 2024
    Assignee: KLA Corporation
    Inventors: Andrei V. Shchegrov, Lawrence D. Rotter, David Y. Wang, Andrei Veldman, Kevin Peterlinz, Gregory Brady, Derrick A. Shaughnessy
  • Publication number: 20220268714
    Abstract: Methods and systems for characterizing dimensions and material properties of semiconductor devices by full beam x-ray scatterometry are described herein. A full beam x-ray scatterometry measurement involves illuminating a sample with an X-ray beam and detecting the intensities of the resulting zero diffraction order and higher diffraction orders simultaneously for one or more angles of incidence relative to the sample. The simultaneous measurement of the direct beam and the scattered orders enables high throughput measurements with improved accuracy. The full beam x-ray scatterometry system includes one or more photon counting detectors with high dynamic range and thick, highly absorptive crystal substrates that absorb the direct beam with minimal parasitic backscattering.
    Type: Application
    Filed: April 18, 2022
    Publication date: August 25, 2022
    Inventors: Antonio Arion Gellineau, Thaddeus Gerard Dziura, John J. Hench, Andrei Veldman, Sergey Zalubovsky
  • Patent number: 11313816
    Abstract: Methods and systems for characterizing dimensions and material properties of semiconductor devices by full beam x-ray scatterometry are described herein. A full beam x-ray scatterometry measurement involves illuminating a sample with an X-ray beam and detecting the intensities of the resulting zero diffraction order and higher diffraction orders simultaneously for one or more angles of incidence relative to the sample. The simultaneous measurement of the direct beam and the scattered orders enables high throughput measurements with improved accuracy. The full beam x-ray scatterometry system includes one or more photon counting detectors with high dynamic range and thick, highly absorptive crystal substrates that absorb the direct beam with minimal parasitic backscattering.
    Type: Grant
    Filed: June 5, 2020
    Date of Patent: April 26, 2022
    Assignee: KLA Corporation
    Inventors: Antonio Arion Gellineau, Thaddeus Gerard Dziura, John J. Hench, Andrei Veldman, Sergey Zalubovsky
  • Patent number: 11099137
    Abstract: A semiconductor metrology tool inspects an area of a semiconductor wafer. The inspected area includes a plurality of instances of a 3D semiconductor structure arranged periodically in at least one dimension. A computer system generates a model of a respective instance of the 3D semiconductor structure based on measurements collected during the inspection. The computer system renders an augmented-reality or virtual-reality (AR/VR) image of the model that shows a 3D shape of the model and provides the AR/VR image to an AR/VR viewing device for display.
    Type: Grant
    Filed: August 28, 2020
    Date of Patent: August 24, 2021
    Assignee: KLA Corporation
    Inventors: Aaron J. Rosenberg, Jonathan Iloreta, Thaddeus G. Dziura, Antonio Gellineau, Yin Xu, Kaiwen Xu, John Hench, Abhi Gunde, Andrei Veldman, Liequan Lee, Houssam Chouaib
  • Patent number: 11086288
    Abstract: Methods and systems for solving measurement models of complex device structures with reduced computational effort and memory requirements are presented. The computational efficiency of electromagnetic simulation algorithms based on truncated spatial harmonic series is improved for periodic targets that exhibit a fundamental spatial period and one or more approximate periods that are integer fractions of the fundamental spatial period. Spatial harmonics are classified according to each distinct period of the target exhibiting multiple periodicity. A distinct truncation order is selected for each group of spatial harmonics. This approach produces optimal, sparse truncation order sampling patterns, and ensures that only harmonics with significant contributions to the approximation of the target are selected for computation.
    Type: Grant
    Filed: December 26, 2018
    Date of Patent: August 10, 2021
    Assignee: KLA-Tencor Corporation
    Inventor: Andrei Veldman
  • Patent number: 11073487
    Abstract: Methods and systems for positioning a specimen and characterizing an x-ray beam incident onto the specimen in a Transmission, Small-Angle X-ray Scatterometry (T-SAXS) metrology system are described herein. A specimen positioning system locates a wafer vertically and actively positions the wafer in six degrees of freedom with respect to the x-ray illumination beam without attenuating the transmitted radiation. In some embodiments, a cylindrically shaped occlusion element is scanned across the illumination beam while the detected intensity of the transmitted flux is measured to precisely locate the beam center. In some other embodiments, a periodic calibration target is employed to precisely locate the beam center. The periodic calibration target includes one or more spatially defined zones having different periodic structures that diffract X-ray illumination light into distinct, measurable diffraction patterns.
    Type: Grant
    Filed: May 9, 2018
    Date of Patent: July 27, 2021
    Assignee: KLA-Tencor Corporation
    Inventors: Alexander Bykanov, Nikolay Artemiev, Joseph A. Di Regolo, Antonio Gellineau, Alexander Kuznetsov, Andrei Veldman, John Hench
  • Publication number: 20210223166
    Abstract: The system includes a modulatable illumination source configured to illuminate a surface of a sample disposed on a sample stage, a detector configured to detect illumination emanating from a surface of the sample, illumination optics configured to direct illumination from the modulatable illumination source to the surface of the sample, collection optics configured to direct illumination from the surface of the sample to the detector, and a modulation control system communicatively coupled to the modulatable illumination source, wherein the modulation control system is configured to modulate a drive current of the modulatable illumination source at a selected modulation frequency suitable for generating illumination having a selected coherence feature length. In addition, the present invention includes the time-sequential interleaving of outputs of multiple light sources to generate periodic pulse trains for use in multi-wavelength time-sequential optical metrology.
    Type: Application
    Filed: April 5, 2021
    Publication date: July 22, 2021
    Inventors: Andrei V. Shchegrov, Lawrence D. Rotter, David Y. Wang, Andrei Veldman, Kevin Peterlinz, Gregory Brady, Derrick A. Shaughnessy
  • Patent number: 10969328
    Abstract: The system includes a modulatable illumination source configured to illuminate a surface of a sample disposed on a sample stage, a detector configured to detect illumination emanating from a surface of the sample, illumination optics configured to direct illumination from the modulatable illumination source to the surface of the sample, collection optics configured to direct illumination from the surface of the sample to the detector, and a modulation control system communicatively coupled to the modulatable illumination source, wherein the modulation control system is configured to modulate a drive current of the modulatable illumination source at a selected modulation frequency suitable for generating illumination having a selected coherence feature length. In addition, the present invention includes the time-sequential interleaving of outputs of multiple light sources to generate periodic pulse trains for use in multi-wavelength time-sequential optical metrology.
    Type: Grant
    Filed: February 25, 2019
    Date of Patent: April 6, 2021
    Assignee: KLA Corporation
    Inventors: Andrei V. Shchegrov, Lawrence D. Rotter, David Y. Wang, Andrei Veldman, Kevin Peterlinz, Gregory Brady, Derrick A. Shaughnessy
  • Publication number: 20200393386
    Abstract: A semiconductor metrology tool inspects an area of a semiconductor wafer. The inspected area includes a plurality of instances of a 3D semiconductor structure arranged periodically in at least one dimension. A computer system generates a model of a respective instance of the 3D semiconductor structure based on measurements collected during the inspection. The computer system renders an augmented-reality or virtual-reality (AR/VR) image of the model that shows a 3D shape of the model and provides the AR/VR image to an AR/VR viewing device for display.
    Type: Application
    Filed: August 28, 2020
    Publication date: December 17, 2020
    Inventors: Aaron J. Rosenberg, Jonathan Iloreta, Thaddeus G. Dziura, Antonio Gellineau, Yin Xu, Kaiwen Xu, John Hench, Abhi Gunde, Andrei Veldman, Liequan Lee, Houssam Chouaib
  • Patent number: 10794839
    Abstract: A semiconductor metrology tool inspects an area of a semiconductor wafer. The inspected area includes a plurality of instances of a 3D semiconductor structure arranged periodically in at least one dimension. A computer system generates a model of a respective instance of the 3D semiconductor structure based on measurements collected during the inspection. The computer system renders an image of the model that shows a 3D shape of the model and provides the image to a device for display.
    Type: Grant
    Filed: February 22, 2019
    Date of Patent: October 6, 2020
    Assignee: KLA Corporation
    Inventors: Aaron J. Rosenberg, Jonathan Iloreta, Thaddeus G. Dziura, Antonio Gellineau, Yin Xu, Kaiwen Xu, John Hench, Abhi Gunde, Andrei Veldman, Liequan Lee, Houssam Chouaib
  • Publication number: 20200300790
    Abstract: Methods and systems for characterizing dimensions and material properties of semiconductor devices by full beam x-ray scatterometry are described herein. A full beam x-ray scatterometry measurement involves illuminating a sample with an X-ray beam and detecting the intensities of the resulting zero diffraction order and higher diffraction orders simultaneously for one or more angles of incidence relative to the sample. The simultaneous measurement of the direct beam and the scattered orders enables high throughput measurements with improved accuracy. The full beam x-ray scatterometry system includes one or more photon counting detectors with high dynamic range and thick, highly absorptive crystal substrates that absorb the direct beam with minimal parasitic backscattering.
    Type: Application
    Filed: June 5, 2020
    Publication date: September 24, 2020
    Inventors: Antonio Arion Gellineau, Thaddeus Gerard Dziura, John J. Hench, Andrei Veldman, Sergey Zalubovsky
  • Patent number: 10775323
    Abstract: Methods and systems for characterizing dimensions and material properties of semiconductor devices by full beam x-ray scatterometry are described herein. A full beam x-ray scatterometry measurement involves illuminating a sample with an X-ray beam and detecting the intensities of the resulting zero diffraction order and higher diffraction orders simultaneously for one or more angles of incidence relative to the sample. The simultaneous measurement of the direct beam and the scattered orders enables high throughput measurements with improved accuracy. The full beam x-ray scatterometry system includes one or more photon counting detectors with high dynamic range and thick, highly absorptive crystal substrates that absorb the direct beam with minimal parasitic backscattering.
    Type: Grant
    Filed: January 30, 2017
    Date of Patent: September 15, 2020
    Assignee: KLA-Tencor Corporation
    Inventors: Antonio Arion Gellineau, Thaddeus Gerard Dziura, John J. Hench, Andrei Veldman, Sergey Zalubovsky
  • Publication number: 20200271595
    Abstract: A semiconductor metrology tool inspects an area of a semiconductor wafer. The inspected area includes a plurality of instances of a 3D semiconductor structure arranged periodically in at least one dimension. A computer system generates a model of a respective instance of the 3D semiconductor structure based on measurements collected during the inspection. The computer system renders an image of the model that shows a 3D shape of the model and provides the image to a device for display.
    Type: Application
    Filed: February 22, 2019
    Publication date: August 27, 2020
    Inventors: Aaron J. Rosenberg, Jonathan Iloreta, Thaddeus G. Dziura, Antonio Gellineau, Yin Xu, Kaiwen Xu, John Hench, Abhi Gunde, Andrei Veldman, Liequan Lee, Houssam Chouaib
  • Patent number: 10712145
    Abstract: Methods and systems for evaluating the geometric characteristics of patterned structures are presented. More specifically, geometric structures generated by one or multiple patterning processes are measured by two or more metrology systems in accordance with a hybrid metrology methodology. A measurement result from one metrology system is communicated to at least one other metrology systems to increase the measurement performance of the receiving system. Similarly, a measurement result from the receiving metrology system is communicated back to the sending metrology system to increase the measurement performance of the sending system. In this manner, measurement results obtained from each metrology system are improved based on measurement results received from other cooperating metrology systems. In some examples, metrology capability is expanded to measure parameters of interest that were previously unmeasurable by each metrology system operating independently.
    Type: Grant
    Filed: October 19, 2017
    Date of Patent: July 14, 2020
    Assignee: KLA-Tencor Corporation
    Inventors: Boxue Chen, Andrei Veldman, Alexander Kuznetsov, Andrei V. Shchegrov
  • Patent number: 10677586
    Abstract: The embodiments disclosed herein can enable a target on a semiconductor wafer to be reconstructed and/or imaged. A surface of a target on a semiconductor wafer is measured using a wafer metrology tool. A voxel map of the surface is fixed to match geometry measurements and using scattering density of expected materials. Uniform scaling of the scattering density of all fixed surface voxels can occur.
    Type: Grant
    Filed: July 27, 2018
    Date of Patent: June 9, 2020
    Assignee: KLA-Tencor Corporation
    Inventors: John Hench, Andrei Veldman
  • Publication number: 20200080836
    Abstract: The embodiments disclosed herein can enable a target on a semiconductor wafer to be reconstructed and/or imaged. A surface of a target on a semiconductor wafer is measured using a wafer metrology tool. A voxel map of the surface is fixed to match geometry measurements and using scattering density of expected materials. Uniform scaling of the scattering density of all fixed surface voxels can occur.
    Type: Application
    Filed: July 27, 2018
    Publication date: March 12, 2020
    Inventors: John Hench, Andrei Veldman
  • Publication number: 20190195782
    Abstract: The system includes a modulatable illumination source configured to illuminate a surface of a sample disposed on a sample stage, a detector configured to detect illumination emanating from a surface of the sample, illumination optics configured to direct illumination from the modulatable illumination source to the surface of the sample, collection optics configured to direct illumination from the surface of the sample to the detector, and a modulation control system communicatively coupled to the modulatable illumination source, wherein the modulation control system is configured to modulate a drive current of the modulatable illumination source at a selected modulation frequency suitable for generating illumination having a selected coherence feature length. In addition, the present invention includes the time-sequential interleaving of outputs of multiple light sources to generate periodic pulse trains for use in multi-wavelength time-sequential optical metrology.
    Type: Application
    Filed: February 25, 2019
    Publication date: June 27, 2019
    Inventors: Andrei V. Shchegrov, Lawrence D. Rotter, David Y. Wang, Andrei Veldman, Kevin Peterlinz, Gregory Brady, Derrick A. Shaughnessy
  • Publication number: 20190129376
    Abstract: Methods and systems for solving measurement models of complex device structures with reduced computational effort and memory requirements are presented. The computational efficiency of electromagnetic simulation algorithms based on truncated spatial harmonic series is improved for periodic targets that exhibit a fundamental spatial period and one or more approximate periods that are integer fractions of the fundamental spatial period. Spatial harmonics are classified according to each distinct period of the target exhibiting multiple periodicity. A distinct truncation order is selected for each group of spatial harmonics. This approach produces optimal, sparse truncation order sampling patterns, and ensures that only harmonics with significant contributions to the approximation of the target are selected for computation.
    Type: Application
    Filed: December 26, 2018
    Publication date: May 2, 2019
    Inventor: Andrei Veldman
  • Patent number: 10215688
    Abstract: The system includes a modulatable illumination source configured to illuminate a surface of a sample disposed on a sample stage, a detector configured to detect illumination emanating from a surface of the sample, illumination optics configured to direct illumination from the modulatable illumination source to the surface of the sample, collection optics configured to direct illumination from the surface of the sample to the detector, and a modulation control system communicatively coupled to the modulatable illumination source, wherein the modulation control system is configured to modulate a drive current of the modulatable illumination source at a selected modulation frequency suitable for generating illumination having a selected coherence feature length. In addition, the present invention includes the time-sequential interleaving of outputs of multiple light sources to generate periodic pulse trains for use in multi-wavelength time-sequential optical metrology.
    Type: Grant
    Filed: July 22, 2016
    Date of Patent: February 26, 2019
    Assignee: KLA-Tencor Corporation
    Inventors: Andrei V. Shchegrov, Lawrence D. Rotter, David Y. Wang, Andrei Veldman, Kevin Peterlinz, Gregory Brady, Derrick A. Shaughnessy
  • Patent number: 10185303
    Abstract: Methods and systems for solving measurement models of complex device structures with reduced computational effort and memory requirements are presented. The computational efficiency of electromagnetic simulation algorithms based on truncated spatial harmonic series is improved for periodic targets that exhibit a fundamental spatial period and one or more approximate periods that are integer fractions of the fundamental spatial period. Spatial harmonics are classified according to each distinct period of the target exhibiting multiple periodicity. A distinct truncation order is selected for each group of spatial harmonics. This approach produces optimal, sparse truncation order sampling patterns, and ensures that only harmonics with significant contributions to the approximation of the target are selected for computation.
    Type: Grant
    Filed: February 19, 2016
    Date of Patent: January 22, 2019
    Assignee: KLA-Tencor Corporation
    Inventor: Andrei Veldman