Patents by Inventor Andres Guillermo Morales

Andres Guillermo Morales has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11734832
    Abstract: Techniques for determining predictions on a top-down representation of an environment based on object movement are discussed herein. Sensors of a first vehicle (such as an autonomous vehicle) may capture sensor data of an environment, which may include object(s) separate from the first vehicle (e.g., a vehicle, a pedestrian, a bicycle). A multi-channel image representing a top-down view of the object(s) and the environment may be generated based in part on the sensor data. Environmental data (object extents, velocities, lane positions, crosswalks, etc.) may also be encoded in the image. Multiple images may be generated representing the environment over time and input into a prediction system configured to output a trajectory template (e.g., general intent for future movement) and a predicted trajectory (e.g., more accurate predicted movement) associated with each object. The prediction system may include a machine learned model configured to output the trajectory template(s) and the predicted trajector(ies).
    Type: Grant
    Filed: February 2, 2022
    Date of Patent: August 22, 2023
    Assignee: Zoox, Inc.
    Inventors: Andres Guillermo Morales Morales, Marin Kobilarov, Gowtham Garimella, Kai Zhenyu Wang
  • Publication number: 20230159060
    Abstract: Techniques for determining unified futures of objects in an environment are discussed herein. Techniques may include determining a first feature associated with an object in an environment and a second feature associated with the environment and based on a position of the object in the environment, updating a graph neural network (GNN) to encode the first feature and second feature into a graph node representing the object and encode relative positions of additional objects in the environment into one or more edges attached to the node. The GNN may be decoded to determine a distribution of predicted positions for the object in the future that meet a criterion, allowing for more efficient sampling. A predicted position of the object in the future may be determined by sampling from the distribution.
    Type: Application
    Filed: November 24, 2021
    Publication date: May 25, 2023
    Inventors: Gowtham Garimella, Marin Kobilarov, Andres Guillermo Morales Morales, Ethan Miller Pronovost, Kai Zhenyu Wang, Xiaosi Zeng
  • Publication number: 20230159059
    Abstract: Techniques for determining unified futures of objects in an environment are discussed herein. Techniques may include determining a first feature associated with an object in an environment and a second feature associated with the environment and based on a position of the object in the environment, updating a graph neural network (GNN) to encode the first feature and second feature into a graph node representing the object and encode relative positions of additional objects in the environment into one or more edges attached to the node. The GNN may be decoded to determine a predicted position of the object at a subsequent timestep. Further, a predicted trajectory of the object may be determined using predicted positions of the object at various timesteps.
    Type: Application
    Filed: November 24, 2021
    Publication date: May 25, 2023
    Inventors: Gowtham Garimella, Marin Kobilarov, Andres Guillermo Morales Morales, Ethan Miller Pronovost, Kai Zhenyu Wang, Xiaosi Zeng
  • Publication number: 20230150549
    Abstract: Techniques for determining a response of a simulated vehicle to a simulated object in a simulation are discussed herein. Log data captured by a physical vehicle in an environment can be received. Object data representing an object in the log data can be used to instantiate a simulated object in a simulation to determine a response of a simulated vehicle to the simulated object. Additionally, one or more trajectory segments in a trajectory library representing the log data can be determined and instantiated as a trajectory of the simulated object in order to increase the accuracy and realism of the simulation.
    Type: Application
    Filed: November 18, 2021
    Publication date: May 18, 2023
    Inventors: Andres Guillermo Morales Morales, Samir Parikh, Kai Zhenyu Wang
  • Patent number: 11631200
    Abstract: Techniques for determining predictions on a top-down representation of an environment based on vehicle action(s) are discussed herein. Sensors of a first vehicle (such as an autonomous vehicle) can capture sensor data of an environment, which may include object(s) separate from the first vehicle (e.g., a vehicle or a pedestrian). A multi-channel image representing a top-down view of the object(s) and the environment can be generated based on the sensor data, map data, and/or action data. Environmental data (object extents, velocities, lane positions, crosswalks, etc.) can be encoded in the image. Action data can represent a target lane, trajectory, etc. of the first vehicle. Multiple images can be generated representing the environment over time and input into a prediction system configured to output prediction probabilities associated with possible locations of the object(s) in the future, which may be based on the actions of the autonomous vehicle.
    Type: Grant
    Filed: May 20, 2021
    Date of Patent: April 18, 2023
    Assignee: Zoox, Inc.
    Inventors: Gowtham Garimella, Marin Kobilarov, Andres Guillermo Morales Morales, Kai Zhenyu Wang
  • Publication number: 20220274625
    Abstract: Techniques are discussed herein for generating and using graph neural networks (GNNs) including vectorized representations of map elements and entities within the environment of an autonomous vehicle. Various techniques may include vectorizing map data into representations of map elements, and object data representing entities in the environment of the autonomous vehicle. In some examples, the autonomous vehicle may generate and/or use a GNN representing the environment, including nodes stored as vectorized representations of map elements and entities, and edge features including the relative position and relative yaw between the objects. Machine-learning inference operations may be executed on the GNN, and the node and edge data may be extracted and decoded to predict future states of the entities in the environment.
    Type: Application
    Filed: February 26, 2021
    Publication date: September 1, 2022
    Inventors: Gowtham Garimella, Andres Guillermo Morales Morales
  • Patent number: 11379308
    Abstract: Techniques are disclosed for re-executing a data processing pipeline following a failure of at least one of its components. The techniques may include a syntax for defining a compute graph associated with the data processing pipeline and receiving such a compute graph in association with a specific data processing pipeline. The technique may include executing the data processing pipeline, determining that a component of the data processing pipeline failed, and determining a portion of the data processing pipeline to execute/re-execute based at least in part on dependencies defined by the data processing pipeline in association with the failed component. Re-executing the one or more components may comprise retrieving an output saved in association with a component upon which the failed component depends.
    Type: Grant
    Filed: December 10, 2018
    Date of Patent: July 5, 2022
    Assignee: Zoox, Inc.
    Inventors: Ethan Petrick Dreyfuss, Michael Haggblade, Hao Li, Andres Guillermo Morales Morales
  • Patent number: 11276179
    Abstract: Techniques for determining predictions on a top-down representation of an environment based on object movement are discussed herein. Sensors of a first vehicle (such as an autonomous vehicle) may capture sensor data of an environment, which may include object(s) separate from the first vehicle (e.g., a vehicle, a pedestrian, a bicycle). A multi-channel image representing a top-down view of the object(s) and the environment may be generated based in part on the sensor data. Environmental data (object extents, velocities, lane positions, crosswalks, etc.) may also be encoded in the image. Multiple images may be generated representing the environment over time and input into a prediction system configured to output a trajectory template (e.g., general intent for future movement) and a predicted trajectory (e.g., more accurate predicted movement) associated with each object. The prediction system may include a machine learned model configured to output the trajectory template(s) and the predicted trajector(ies).
    Type: Grant
    Filed: December 18, 2019
    Date of Patent: March 15, 2022
    Assignee: Zoox, Inc.
    Inventors: Andres Guillermo Morales Morales, Marin Kobilarov, Gowtham Garimella, Kai Zhenyu Wang
  • Publication number: 20210271901
    Abstract: Techniques for determining predictions on a top-down representation of an environment based on vehicle action(s) are discussed herein. Sensors of a first vehicle (such as an autonomous vehicle) can capture sensor data of an environment, which may include object(s) separate from the first vehicle (e.g., a vehicle or a pedestrian). A multi-channel image representing a top-down view of the object(s) and the environment can be generated based on the sensor data, map data, and/or action data. Environmental data (object extents, velocities, lane positions, crosswalks, etc.) can be encoded in the image. Action data can represent a target lane, trajectory, etc. of the first vehicle. Multiple images can be generated representing the environment over time and input into a prediction system configured to output prediction probabilities associated with possible locations of the object(s) in the future, which may be based on the actions of the autonomous vehicle.
    Type: Application
    Filed: May 20, 2021
    Publication date: September 2, 2021
    Inventors: Gowtham Garimella, Marin Kobilarov, Andres Guillermo Morales Morales, Kai Zhenyu Wang
  • Publication number: 20210192748
    Abstract: Techniques for determining predictions on a top-down representation of an environment based on object movement are discussed herein. Sensors of a first vehicle (such as an autonomous vehicle) may capture sensor data of an environment, which may include object(s) separate from the first vehicle (e.g., a vehicle, a pedestrian, a bicycle). A multi-channel image representing a top-down view of the object(s) and the environment may be generated based in part on the sensor data. Environmental data (object extents, velocities, lane positions, crosswalks, etc.) may also be encoded in the image. Multiple images may be generated representing the environment over time and input into a prediction system configured to output a trajectory template (e.g., general intent for future movement) and a predicted trajectory (e.g., more accurate predicted movement) associated with each object. The prediction system may include a machine learned model configured to output the trajectory template(s) and the predicted trajector(ies).
    Type: Application
    Filed: December 18, 2019
    Publication date: June 24, 2021
    Inventors: Andres Guillermo Morales Morales, Marin Kobilarov, Gowtham Garimella, Kai Zhenyu Wang
  • Patent number: 11023749
    Abstract: Techniques for determining predictions on a top-down representation of an environment based on vehicle action(s) are discussed herein. Sensors of a first vehicle (such as an autonomous vehicle) can capture sensor data of an environment, which may include object(s) separate from the first vehicle (e.g., a vehicle or a pedestrian). A multi-channel image representing a top-down view of the object(s) and the environment can be generated based on the sensor data, map data, and/or action data. Environmental data (object extents, velocities, lane positions, crosswalks, etc.) can be encoded in the image. Action data can represent a target lane, trajectory, etc. of the first vehicle. Multiple images can be generated representing the environment over time and input into a prediction system configured to output prediction probabilities associated with possible locations of the object(s) in the future, which may be based on the actions of the autonomous vehicle.
    Type: Grant
    Filed: July 5, 2019
    Date of Patent: June 1, 2021
    Assignee: Zoox, Inc.
    Inventors: Gowtham Garimella, Marin Kobilarov, Andres Guillermo Morales Morales, Kai Zhenyu Wang
  • Publication number: 20210004611
    Abstract: Techniques for determining predictions on a top-down representation of an environment based on vehicle action(s) are discussed herein. Sensors of a first vehicle (such as an autonomous vehicle) can capture sensor data of an environment, which may include object(s) separate from the first vehicle (e.g., a vehicle or a pedestrian). A multi-channel image representing a top-down view of the object(s) and the environment can be generated based on the sensor data, map data, and/or action data. Environmental data (object extents, velocities, lane positions, crosswalks, etc.) can be encoded in the image. Action data can represent a target lane, trajectory, etc. of the first vehicle. Multiple images can be generated representing the environment over time and input into a prediction system configured to output prediction probabilities associated with possible locations of the object(s) in the future, which may be based on the actions of the autonomous vehicle.
    Type: Application
    Filed: July 5, 2019
    Publication date: January 7, 2021
    Inventors: Gowtham Garimella, Marin Kobilarov, Andres Guillermo Morales Morales, Kai Zhenyu Wang
  • Publication number: 20200183788
    Abstract: Techniques are disclosed for re-executing a data processing pipeline following a failure of at least one of its components. The techniques may include a syntax for defining a compute graph associated with the data processing pipeline and receiving such a compute graph in association with a specific data processing pipeline. The technique may include executing the data processing pipeline, determining that a component of the data processing pipeline failed, and determining a portion of the data processing pipeline to execute/re-execute based at least in part on dependencies defined by the data processing pipeline in association with the failed component. Re-executing the one or more components may comprise retrieving an output saved in association with a component upon which the failed component depends.
    Type: Application
    Filed: December 10, 2018
    Publication date: June 11, 2020
    Inventors: Ethan Petrick Dreyfuss, Michael Haggblade, Hao Li, Andres Guillermo Morales Morales
  • Publication number: 20180060609
    Abstract: A computing device executes one or more trusted execution environment (TEE) processes in a TEE of a processor. The one or more TEE processes cryptographically protect a secret and a policy. The policy specifies a plurality of conditions on usage of the secret. A particular non-TEE process generates a request whose fulfillment involves an action requiring use of the secret. Responsive to the request, one or more non-TEE processes determine whether a first subset of the plurality of conditions is satisfied. Responsive to the first subset of the plurality of conditions being satisfied, the one or more TEE processes determine that a second, different subset of the plurality of conditions is satisfied. Responsive to determining the second subset of the plurality of conditions is satisfied, the one or more TEE processes use the secret to perform the action.
    Type: Application
    Filed: October 23, 2017
    Publication date: March 1, 2018
    Inventors: Benjamin David Poiesz, Andrew Abramson, Neel Rao, Shawn Willden, Andres Guillermo Morales, James Brooks Miller
  • Patent number: 9830480
    Abstract: A computing device executes one or more trusted execution environment (TEE) processes in a TEE of a processor. The one or more TEE processes cryptographically protect a secret and a policy. The policy specifies a plurality of conditions on usage of the secret. A particular non-TEE process generates a request whose fulfillment involves an action requiring use of the secret. Responsive to the request, one or more non-TEE processes determine whether a first subset of the plurality of conditions is satisfied. Responsive to the first subset of the plurality of conditions being satisfied, the one or more TEE processes determine that a second, different subset of the plurality of conditions is satisfied. Responsive to determining the second subset of the plurality of conditions is satisfied, the one or more TEE processes use the secret to perform the action.
    Type: Grant
    Filed: August 21, 2015
    Date of Patent: November 28, 2017
    Assignee: Google LLC
    Inventors: Benjamin David Poiesz, Andrew Abramson, Neel Rao, Shawn Edward Willden, Andres Guillermo Morales, James Brooks Miller
  • Publication number: 20160350561
    Abstract: A computing device executes one or more trusted execution environment (TEE) processes in a TEE of a processor. The one or more TEE processes cryptographically protect a secret and a policy. The policy specifies a plurality of conditions on usage of the secret. A particular non-TEE process generates a request whose fulfillment involves an action requiring use of the secret. Responsive to the request, one or more non-TEE processes determine whether a first subset of the plurality of conditions is satisfied. Responsive to the first subset of the plurality of conditions being satisfied, the one or more TEE processes determine that a second, different subset of the plurality of conditions is satisfied. Responsive to determining the second subset of the plurality of conditions is satisfied, the one or more TEE processes use the secret to perform the action.
    Type: Application
    Filed: August 21, 2015
    Publication date: December 1, 2016
    Inventors: Benjamin David Poiesz, Andrew Abramson, Neel Rao, Shawn Edward Willden, Andres Guillermo Morales, James Brooks Miller