Patents by Inventor Andres Sandoval

Andres Sandoval has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11583886
    Abstract: A robot end effector (100) for dispensing an extrudable substance (102) comprises a chassis (110), a static mixer (101), and cartridge bays (122), extending from the chassis (110). Each of the cartridge bays (122) is shaped to receive a corresponding one of the two-part cartridges (104). Fluidic communication between the selected one of the two-part cartridges (104) and the static mixer (101) is established when the cartridge bays (122) are rotated about an axis (190) to a predetermined orientation with respect to the chassis (110). The robot end effector (100) also comprises a dispensing valve (130), attached to the chassis (110), and a head assembly (150), comprising an inlet manifold (152). The inlet manifold (152) is configured to selectively supply compressed air from a pressure source (199) to contents of a corresponding one of the two-part cartridges (104).
    Type: Grant
    Filed: September 9, 2021
    Date of Patent: February 21, 2023
    Assignee: The Boeing Company
    Inventors: John Walter Pringle, IV, Angelica Davancens, Dehwei Hsu, Derek Nelson, Steve Andres Sandoval
  • Publication number: 20220288621
    Abstract: A robot end effector (100) for dispensing an extrudable substance (102) comprises a chassis (110), a static mixer (101), and cartridge bays (122), extending from the chassis (110). Each of the cartridge bays (122) is shaped to receive a corresponding one of the two-part cartridges (104). Fluidic communication between the selected one of the two-part cartridges (104) and the static mixer (101) is established when the cartridge bays (122) are rotated about an axis (190) to a predetermined orientation with respect to the chassis (110). The robot end effector (100) also comprises a dispensing valve (130), attached to the chassis (110), and a head assembly (150), comprising an inlet manifold (152). The inlet manifold (152) is configured to selectively supply compressed air from a pressure source (199) to contents of a corresponding one of the two-part cartridges (104).
    Type: Application
    Filed: September 9, 2021
    Publication date: September 15, 2022
    Applicant: The Boeig Company
    Inventors: John Walter Pringle IV, Angelica Davancens, Dehwei Hsu, Derek Nelson, Steve Andres Sandoval
  • Patent number: 11396300
    Abstract: Disclosed are various techniques to optimize load delivery management of multiple vehicles along route. The optimization can involve evaluating vehicle-in-front information along with look ahead data to determine a recommended speed target and/or idle stop times and durations. The optimization can also involve determining bottleneck conditions from one or more vehicles and/or one or more infrastructure conditions and providing one or more recommended actions in response thereto.
    Type: Grant
    Filed: June 5, 2019
    Date of Patent: July 26, 2022
    Assignee: Cummins Inc.
    Inventors: Archit N. Koti, Jairo Andres Sandoval Leon, Vivek Anand Sujan, Patrick J. Shook, Apurva Arvind Chunodkar, Kenneth M. Follen
  • Patent number: 11377861
    Abstract: A building is constructed by providing a subfloor and forming a hole in the subfloor. A hole protector includes a cylinder, a skirt disposed around the cylinder, and a cap disposed on the cylinder. The hole protector is disposed over the hole with the cylinder extending into the hole. The hole protector is fastened to the subfloor. The cap is removed from the hole protector. An MPE is disposed through the cylinder.
    Type: Grant
    Filed: December 2, 2020
    Date of Patent: July 5, 2022
    Assignee: Dima Building Innovators LLC
    Inventors: Manuel Altero-Marquez, David Cruz, Issael Altero-Marquez, Andres Sandoval, Aaron Watson
  • Patent number: 11357985
    Abstract: Transvascular diaphragm pacing systems (TDPS) and methods are disclosed for providing respiratory therapy to a patient. The TDPS can provide rapid insertion and deployment of endovascular pacing electrodes in critically ill patients who require intubation and invasive PPMV in order to support the physiological requirements of the human ventilatory system. The systems and methods make best use of the contractile properties of the diaphragm muscle and prevent muscle disuse and muscle atrophy. This can be carried out by engaging the phrenic nerves using patterned functional electrical stimulation applied to endovascular electrodes that are temporarily and reversibly inserted in central veins of the patient, such as the left subclavian vein and the superior vena cava.
    Type: Grant
    Filed: January 31, 2020
    Date of Patent: June 14, 2022
    Assignee: Lungpacer Medical Inc.
    Inventors: Ramasamy Meyyappan, Joaquin Andres Hoffer, Marcelo Baru, Bernard Coquinco, Rodrigo Andres Sandoval, Jessica Kit-Sum Tang
  • Patent number: 11352008
    Abstract: A system, method, and apparatus includes management of coasting during operation of a vehicle. Speed of a vehicle is monitored during a coasting event and is compared against a threshold to determine whether to remain coasting or re-engage an engine to a driveline. If instantaneous speed exceeds the threshold, predicted speed can be used to determine whether to permit short duration excursions, or to re-engage the engine to the driveline. These techniques can be used whether the vehicle is slowing down below a threshold or speeding up above a threshold.
    Type: Grant
    Filed: June 10, 2020
    Date of Patent: June 7, 2022
    Assignee: Cummins Inc.
    Inventors: Jairo Andres Sandoval Leon, Vivek Anand Sujan, Tejas Shrikant Kinjawadekar
  • Publication number: 20220023625
    Abstract: Transvascular diaphragm pacing systems (TDPS) and methods are disclosed for providing respiratory therapy to a patient. The TDPS can provide rapid insertion and deployment of endovascular pacing electrodes in critically ill patients who require intubation and invasive PPMV in order to support the physiological requirements of the human ventilatory system. The systems and methods make best use of the contractile properties of the diaphragm muscle and prevent muscle disuse and muscle atrophy. This can be carried out by engaging the phrenic nerves using patterned functional electrical stimulation applied to endovascular electrodes that are temporarily and reversibly inserted in central veins of the patient, such as the left subclavian vein and the superior vena cava.
    Type: Application
    Filed: October 12, 2021
    Publication date: January 27, 2022
    Applicant: Lungpacer Medical Inc.
    Inventors: Ramasamy MEYYAPPAN, Joaquin Andres HOFFER, Marcelo BARU, Bernard COQUINCO, Rodrigo Andres SANDOVAL, Jessica Kit-Sum TANG
  • Patent number: 10988140
    Abstract: A powertrain including a prime mover and an electronically controllable clutch. The powertrain structured selectably engages the clutch to provide power from the prime mover to drive one or more ground contacting wheels and to selectably disengage the clutch to decouple with one or more ground contacting wheels. The electronic control system operatively communicates with the prime mover and the electronically controllable clutch, and uses a predictive cruise control (PCC) controller and an idle coast management (ICM) controller, to control vehicle speed during concurrent operation of the PCC controller and the ICM controller.
    Type: Grant
    Filed: December 15, 2017
    Date of Patent: April 27, 2021
    Assignee: Cummins Inc.
    Inventors: Kenneth M. Follen, Vivek Anand Sujan, Daniel Reed Dempsey, Tejas Shrikant Kinjawadekar, Craig Michael Calmer, Jairo Andres Sandoval Leon, Oruganti Prashanth Sharma
  • Patent number: 10960884
    Abstract: A system, method, and apparatus include a controller structured to predict a change in speed of a vehicle in advance of upcoming terrain and inhibit a coasting event if the speed exceeds a limit. In one form a velocity of the vehicle is predicted using a physics based model of the vehicle within a look ahead window in front of a vehicle. Such a look ahead window can be distance or time based. In another, speed of a vehicle is monitored during a coasting event and is compared against a threshold to determine whether to remain coasting or re-engage an engine to a driveline. The threshold is a function of road grade, and permits a larger deviation from set speed at low grade than at high grade. The function can be based on road grade and vehicle weight.
    Type: Grant
    Filed: June 11, 2020
    Date of Patent: March 30, 2021
    Assignee: Cummins Inc.
    Inventors: Oruganti Prashanth Sharma, Kenneth M. Follen, Tejas Shrikant Kinjawadekar, Vivek Anand Sujan, Daniel Reed Dempsey, Apurva Chunodkar, Nathanael G. Long, Jairo Andres Sandoval Leon
  • Publication number: 20210079668
    Abstract: A building is constructed by providing a subfloor and forming a hole in the subfloor. A hole protector includes a cylinder, a skirt disposed around the cylinder, and a cap disposed on the cylinder. The hole protector is disposed over the hole with the cylinder extending into the hole. The hole protector is fastened to the subfloor. The cap is removed from the hole protector. An MPE is disposed through the cylinder.
    Type: Application
    Filed: December 2, 2020
    Publication date: March 18, 2021
    Applicant: Dima Building Innovators LLC
    Inventors: Manuel Altero-Marquez, David Cruz, Issael Altero-Marquez, Andres Sandoval, Aaron Watson
  • Patent number: 10865572
    Abstract: A building is constructed by providing a subfloor and forming a hole in the subfloor. A hole protector includes a cylinder, a skirt disposed around the cylinder, and a cap disposed on the cylinder. The hole protector is disposed over the hole with the cylinder extending into the hole. The hole protector is fastened to the subfloor. The cap is removed from the hole protector. An MPE is disposed through the cylinder.
    Type: Grant
    Filed: May 31, 2019
    Date of Patent: December 15, 2020
    Assignee: Dima Building Innovators LLC
    Inventors: Manuel Altero-Marquez, David Cruz, Issael Altero-Marquez, Andres Sandoval, Aaron Watson
  • Publication number: 20200346649
    Abstract: A system, method, and apparatus include a controller structured to predict a change in speed of a vehicle in advance of upcoming terrain and inhibit a coasting event if the speed exceeds a limit. In one form a velocity of the vehicle is predicted using a physics based model of the vehicle within a look ahead window in front of a vehicle. Such a look ahead window can be distance or time based. In another, speed of a vehicle is monitored during a coasting event and is compared against a threshold to determine whether to remain coasting or re-engage an engine to a driveline. The threshold is a function of road grade, and permits a larger deviation from set speed at low grade than at high grade. The function can be based on road grade and vehicle weight.
    Type: Application
    Filed: June 11, 2020
    Publication date: November 5, 2020
    Inventors: Oruganti Prashanth Sharma, Kenneth M. Follen, Tejas Shrifant Kinjawadekar, Vivek Anand Sujan, Daniel Reed Dempsey, Apurva Chunodkar, Nathanael G. Long, Jairo Andres Sandoval Leon
  • Publication number: 20200298856
    Abstract: A system, method, and apparatus includes management of coasting during operation of a vehicle. Speed of a vehicle is monitored during a coasting event and is compared against a threshold to determine whether to remain coasting or re-engage an engine to a driveline. If instantaneous speed exceeds the threshold, predicted speed can be used to determine whether to permit short duration excursions, or to re-engage the engine to the driveline. These techniques can be used whether the vehicle is slowing down below a threshold or speeding up above a threshold.
    Type: Application
    Filed: June 10, 2020
    Publication date: September 24, 2020
    Inventors: Jairo Andres Sandoval Leon, Vivek Anand Sujan, Tejas Shrikant Kinjawadekar
  • Patent number: 10717440
    Abstract: A system, method, and apparatus include a controller structured to predict a change in speed of a vehicle in advance of upcoming terrain and inhibit a coasting event if the speed exceeds a limit. In one form a velocity of the vehicle is predicted using a physics based model of the vehicle within a look ahead window in front of a vehicle. Such a look ahead window can be distance or time based. In another, speed of a vehicle is monitored during a coasting event and is compared against a threshold to determine whether to remain coasting or re-engage an engine to a driveline. The threshold is a function of road grade, and permits a larger deviation from set speed at low grade than at high grade. The function can be based on road grade and vehicle weight.
    Type: Grant
    Filed: April 26, 2018
    Date of Patent: July 21, 2020
    Assignee: Cummins Inc.
    Inventors: Oruganti Prashanth Sharma, Kenneth M. Follen, Tejas Shrikant Kinjawadekar, Vivek Anand Sujan, Daniel Reed Dempsey, Apurva Chunodkar, Nathanael G. Long, Jairo Andres Sandoval Leon
  • Patent number: 10710586
    Abstract: A system, method, and apparatus includes management of coasting during operation of a vehicle. Speed of a vehicle is monitored during a coasting event and is compared against a threshold to determine whether to remain coasting or re-engage an engine to a driveline. If instantaneous speed exceeds the threshold, predicted speed can be used to determine whether to permit short duration excursions, or to re-engage the engine to the driveline. These techniques can be used whether the vehicle is slowing down below a threshold or speeding up above a threshold.
    Type: Grant
    Filed: April 25, 2018
    Date of Patent: July 14, 2020
    Assignee: Cummins Inc.
    Inventors: Jairo Andres Sandoval Leon, Vivek Anand Sujan, Tejas Shrikant Kinjawadekar
  • Publication number: 20200164207
    Abstract: Transvascular diaphragm pacing systems (TDPS) and methods are disclosed for providing respiratory therapy to a patient. The TDPS can provide rapid insertion and deployment of endovascular pacing electrodes in critically ill patients who require intubation and invasive PPMV in order to support the physiological requirements of the human ventilatory system. The systems and methods make best use of the contractile properties of the diaphragm muscle and prevent muscle disuse and muscle atrophy. This can be carried out by engaging the phrenic nerves using patterned functional electrical stimulation applied to endovascular electrodes that are temporarily and reversibly inserted in central veins of the patient, such as the left subclavian vein and the superior vena cava.
    Type: Application
    Filed: January 31, 2020
    Publication date: May 28, 2020
    Applicant: Lungpacer Medical Inc.
    Inventors: Ramasamy MEYYAPPAN, Joaquin Andres HOFFER, Marcelo BARU, Bernard COQUINCO, Rodrigo Andres SANDOVAL, Jessica Kit-Sum TANG
  • Patent number: 10589097
    Abstract: Transvascular diaphragm pacing systems (TDPS) and methods are disclosed for providing respiratory therapy to a patient. The TDPS can provide rapid insertion and deployment of endovascular pacing electrodes in critically ill patients who require intubation and invasive PPMV in order to support the physiological requirements of the human ventilatory system. The systems and methods make best use of the contractile properties of the diaphragm muscle and prevent muscle disuse and muscle atrophy. This can be carried out by engaging the phrenic nerves using patterned functional electrical stimulation applied to endovascular electrodes that are temporarily and reversibly inserted in central veins of the patient, such as the left subclavian vein and the superior vena cava.
    Type: Grant
    Filed: July 2, 2019
    Date of Patent: March 17, 2020
    Assignee: Lungpacer Medical Inc.
    Inventors: Ramasamy Meyyappan, Joaquin Andres Hoffer, Marcelo Baru, Bernard Coquinco, Rodrigo Andres Sandoval, Jessica Kit-Sum Tang
  • Patent number: 10561844
    Abstract: Diaphragm pacing systems and methods are disclosed for providing respiratory therapy to a patient. The diaphragm pacing systems can provide rapid insertion and deployment of pacing electrodes in critically ill patients who require intubation and invasive Positive Pressure Mechanical Ventilation (PPMV) in order to support the physiological requirements of the human ventilatory system. The systems and methods make best use of the contractile properties of the diaphragm muscle and prevent muscle disuse and muscle atrophy. This can be carried out by engaging the phrenic nerves using patterned functional electrical stimulation. The diaphragm pacing systems can be designed to seamlessly interface with any commercially available positive-pressure ventilatory assistance/support equipment such as is commonly in use in hospital intensive care units (ICU) for treating critically ill patients with breathing insufficiencies, pain, trauma, sepsis or neurological diseases or deficits.
    Type: Grant
    Filed: August 27, 2018
    Date of Patent: February 18, 2020
    Assignee: Lungpacer Medical Inc.
    Inventors: Ramasamy Meyyappan, Joaquin Andres Hoffer, Marcelo Baru, Bernard Coquinco, Rodrigo Andres Sandoval, Jessica Kit-Sum Tang
  • Publication number: 20190368206
    Abstract: A building is constructed by providing a subfloor and forming a hole in the subfloor. A hole protector includes a cylinder, a skirt disposed around the cylinder, and a cap disposed on the cylinder. The hole protector is disposed over the hole with the cylinder extending into the hole. The hole protector is fastened to the subfloor. The cap is removed from the hole protector. An MPE is disposed through the cylinder.
    Type: Application
    Filed: May 31, 2019
    Publication date: December 5, 2019
    Applicant: Dima Building Innovators LLC
    Inventors: Manuel Altero-Marquez, David Cruz, Issael Altero-Marquez, Andres Sandoval, Aaron Watson
  • Publication number: 20190321632
    Abstract: Transvascular diaphragm pacing systems (TDPS) and methods are disclosed for providing respiratory therapy to a patient. The TDPS can provide rapid insertion and deployment of endovascular pacing electrodes in critically ill patients who require intubation and invasive PPMV in order to support the physiological requirements of the human ventilatory system. The systems and methods make best use of the contractile properties of the diaphragm muscle and prevent muscle disuse and muscle atrophy. This can be carried out by engaging the phrenic nerves using patterned functional electrical stimulation applied to endovascular electrodes that are temporarily and reversibly inserted in central veins of the patient, such as the left subclavian vein and the superior vena cava.
    Type: Application
    Filed: July 2, 2019
    Publication date: October 24, 2019
    Applicant: Lungpacer Medical, Inc.
    Inventors: Ramasamy MEYYAPPAN, Joaquin Andres HOFFER, Marcelo BARU, Bernard COQUINCO, Rodrigo Andres SANDOVAL, Jessica Kit-Sum TANG