Patents by Inventor Andrew A. Berlin

Andrew A. Berlin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190216445
    Abstract: A system for collecting a sample from a tissue includes a medical instrument having a sample collection region. One or more sensors is configured to detect one or more properties of a sample, and is configured to output at least one measured value representative of the one or more properties of the sample. An indicator is operatively connected to the one or more sensors and is configured to provide a notification to a user of the medical instrument based on the one or more properties of the sample detected by the at least one sensor. A method of guiding sample collection is also provided.
    Type: Application
    Filed: March 28, 2019
    Publication date: July 18, 2019
    Inventors: Andrew A. Berlin, Salil Desai, Thomas Ried, Chris Salthouse
  • Publication number: 20190192229
    Abstract: This invention provides a system and method for guiding a surgical instrument based on information obtained using enhanced contrast-mode ultrasound. The enhanced information can be added to information or images obtained in one or more imaging modes. Various pieces of information can be combined and composited, including information regarding tumors, blood vessels, location information, confidence levels, and other information, and can be composited into operative imaging.
    Type: Application
    Filed: November 21, 2018
    Publication date: June 27, 2019
    Inventors: Andrew A. Berlin, Juergen K. Willmann (Deceased), MD, Mon Y. Young
  • Publication number: 20190162831
    Abstract: This invention provides a system and method for enhancing images acquired by an ultrasound scanner. The system and method employs novel techniques that are compatible with the real-world constraints (i.e. energy levels, duration of exam, geometries involved, etc.) of imaging in mammalian tissue (e.g. tissues of human organs containing lesions/tumors), while providing the dramatically image quality.
    Type: Application
    Filed: November 20, 2018
    Publication date: May 30, 2019
    Inventors: Andrew A. Berlin, Juergen K. Willmann, Mon Y. Young
  • Publication number: 20190154821
    Abstract: This invention provides a system and method for background removal from images acquired by an ultrasound scanner in the presence of molecularly bound contrast agent. The system and method employs novel techniques that are compatible with the real-world constraints (i.e. energy levels, duration of exam, geometries involved, etc.) of imaging in mammalian tissue (e.g. tissues of human organs containing lesions/tumors), while providing the dramatically improved signal clarity required to reliably disambiguate contrast agent from other sources of signal intensity.
    Type: Application
    Filed: July 31, 2018
    Publication date: May 23, 2019
    Inventors: Andrew A. Berlin, Mon Y. Young, Juergen K. Willmann, MD
  • Publication number: 20190154822
    Abstract: This invention provides a system and method for background removal from images acquired by an ultrasound scanner in the presence of molecularly bound contrast agent. The system and method employs novel techniques that are compatible with the real-world constraints (i.e. energy levels, duration of exam, geometries involved, etc.) of imaging in mammalian tissue (e.g. tissues of human organs containing lesions/tumors), while providing the dramatically improved signal clarity required to reliably disambiguate contrast agent from other sources of signal intensity.
    Type: Application
    Filed: July 31, 2018
    Publication date: May 23, 2019
    Inventors: Andrew A. Berlin, Mon Y. Young, Juergen K. Willmann
  • Publication number: 20190122073
    Abstract: This invention provides a system and method to propagate uncertainty information in a deep learning pipeline. It allows for the propagation of uncertainty information from one deep learning model to the next by fusing model uncertainty with the original imagery dataset. This approach results in a deep learning architecture where the output of the system contains not only the prediction, but also the model uncertainty information associated with that prediction. The embodiments herein improve upon existing deep learning-based models (CADe models) by providing the model with uncertainty/confidence information associated with (e.g. CADe) decisions. This uncertainty information can be employed in various ways, including (a) transmitting uncertainty from a first stage (or subsystem) of the machine learning system into a next (second) stage (or the next subsystem), and (b) providing uncertainty information to the end user in a manner that characterizes the uncertainty of the overall machine learning model.
    Type: Application
    Filed: October 23, 2017
    Publication date: April 25, 2019
    Inventors: Onur Ozdemir, Benjamin Woodward, Andrew A. Berlin
  • Publication number: 20190080442
    Abstract: This invention provides a system and method that allows the utilization of computer vision system techniques and processes, such as multi-layer separation and contrast mapping, to enhance the detectability of an imaged tumor, opening the door to real-time tumor tracking and/or modulation of a treatment radiation beam so as to maximize the radiation dosage applied to the tumor itself while minimizing the dosage received by surrounding tissues. The techniques and processes also permit more accurate assessment of the level of radiation dosage delivered to the tumor. An image processor receives the image data from the detector as a plurality of image frames, and performs contrast stretching on the image frames to resolve features. A motion analysis module compares static and dynamic features in the contrast-stretched image frames to derive layers of features. The image frames are output as enhanced image frames. The output can be used to guide the beam.
    Type: Application
    Filed: March 5, 2018
    Publication date: March 14, 2019
    Inventors: Andrew A. Berlin, Christopher L. Williams, PhD, Ross Berbeco, PhD
  • Publication number: 20180249954
    Abstract: This invention provides a system and method for performing a surgical procedure that effectively locates and allows a user to avoid engagement with hidden nerves in tissue in real-time. The system and method employs an integrated stimulating and sensing array. The array includes a plurality of spaced-apart electrodes, which are selectively stimulated while the electrodes then sense for a neural response. Each of the electrodes is stimulated to map of the sensed tissue region for localization of nerve paths. This localization can be stored and used to control cutting of tissue. The locations can be marked as nerve-free and/or no-go regions so as to avoid nerve-containing regions in subsequent procedures or following a stimulation procedure. This marking can be by any acceptable physical and/or virtual fiducial mechanism. The array can be a single structure with all relevant electrodes or some electrodes can be provided in a separate, remote probe assembly.
    Type: Application
    Filed: March 1, 2018
    Publication date: September 6, 2018
    Inventors: Daniel K. Freeman, Andrew A. Berlin, Jesse Wheeler
  • Publication number: 20180249953
    Abstract: This invention provides systems and methods for using spatially localized sensor data to construct a multi-dimensional map of the location of key anatomical features, as well as systems and methods for utilizing this map to present location-based information to the surgeon and/or to an automated surgical navigation system. The location map is updated during surgery, so as to retain accuracy even in the presence of muscle-induced motion or deformation of the anatomy, as well as tissue location changes induced by translations or deformations induced by surgical dissection, surgical instrument contact, or biologically-induced tissue motion associated with activities such as respiration, anesthesia-induced gag reflex, blood flow/pulsation, and/or larger-scale changes in patient posture/positioning.
    Type: Application
    Filed: March 1, 2018
    Publication date: September 6, 2018
    Inventors: Andrew A. Berlin, Philip D. Parks, II
  • Publication number: 20180049728
    Abstract: A system for collecting a sample from a tissue includes a medical instrument having a sample collection region. One or more sensors is configured to detect one or more properties of a sample, and is configured to output at least one measured value representative of the one or more properties of the sample. An indicator is operatively connected to the one or more sensors and is configured to provide a notification to a user of the medical instrument based on the one or more properties of the sample detected by the at least one sensor. A method of guiding sample collection is also provided.
    Type: Application
    Filed: August 22, 2017
    Publication date: February 22, 2018
    Inventors: Andrew A. Berlin, Salil Desai, Thomas Ried, Chris Salthouse
  • Publication number: 20170245817
    Abstract: A method of imaging an organism includes introducing a composite nanoparticle into a circulating fluid of an organism to form a circulating fluid mixture in the organism is provided. The composite nanoparticle comprises a core comprising at least one of a contrast agent and a magnetic material, and at least one layer of biocompatible material surrounding the core. The method further includes receiving an image of at least a portion of the organism where the circulating fluid has circulated, removing at least a portion of the circulating fluid mixture from the organism at a first rate, applying a magnetic field to the removed portion of the circulating fluid mixture to selectively remove the composite nanoparticle from the circulating fluid mixture and to produce a filtered fluid mixture, and returning the filtered fluid mixture to the circulating fluid of the organism at a second rate.
    Type: Application
    Filed: February 10, 2017
    Publication date: August 31, 2017
    Inventors: Andrew A. Berlin, Neil Gupta, Rami S. Mangoubi, Adel Malek
  • Patent number: 8940234
    Abstract: Systems and methods for detecting the presence of biomolecules in a sample using biosensors that incorporate resonators which have functionalized surfaces for reacting with target biomolecules. In one embodiment, a device includes a piezoelectric resonator having a functionalized surface configured to react with target molecules, thereby changing the mass and/or charge of the resonator which consequently changes the frequency response of the resonator. The resonator's frequency response after exposure to a sample is compared to a reference, such as the frequency response before exposure to the sample, a stored baseline frequency response or a control resonator's frequency response.
    Type: Grant
    Filed: April 11, 2012
    Date of Patent: January 27, 2015
    Assignee: Intel Corporation
    Inventors: Yuegang Zhang, Andrew A. Berlin, Qing Ma, Li-Peng Wang, Valluri Rao, Mineo Yamakawa
  • Patent number: 8934683
    Abstract: In certain embodiments of the invention, a plurality of images of one or more subjects may be captured using different imaging techniques, such as different modalities of scanning probe microscopy. Parameters may be estimated from the plurality of images, using one or more models of known molecular structures to provide a model-based analysis. The estimated parameters may be fused, with further input from physical models of known molecular structures. The fused parameters may be used to characterize the subjects. Such characterization may include the detection and/or identification of specific molecular structures, such as proteins, peptides and/or nucleic acids of known sequence and/or structure. In some embodiments of the invention the structural characterizations may be used to identify previously unknown properties of a subject molecule.
    Type: Grant
    Filed: January 26, 2009
    Date of Patent: January 13, 2015
    Assignee: Intel Corporation
    Inventors: Horst Haussecker, Andrew A. Berlin, Selena Chan, Eric Hannah, Narayanan Sundararajan, Mineo Yamakawa
  • Patent number: 8278055
    Abstract: The methods and apparatus, disclosed herein are of use for sequencing and/or identifying proteins, polypeptides and/or peptides. Proteins containing labeled amino acid residues may be synthesized and passed through nanopores. A detector operably coupled to a nanopore may detect labeled amino acid residues as they pass through the nanopore. Distance maps for each type of labeled amino acid residue may be compiled. The distance maps may be used to sequence and/or identify the protein. Apparatus of use for protein sequencing and/or identification is also disclosed herein. In alternative methods, other types of analytes may be analyzed by the same techniques.
    Type: Grant
    Filed: October 29, 2003
    Date of Patent: October 2, 2012
    Assignee: Intel Corporation
    Inventors: Xing Su, Andrew A. Berlin
  • Publication number: 20120196384
    Abstract: Systems and methods for detecting the presence of biomolecules in a sample using biosensors that incorporate resonators which have functionalized surfaces for reacting with target biomolecules. In one embodiment, a device includes a piezoelectric resonator having a functionalized surface configured to react with target molecules, thereby changing the mass and/or charge of the resonator which consequently changes the frequency response of the resonator. The resonator's frequency response after exposure to a sample is compared to a reference, such as the frequency response before exposure to the sample, a stored baseline frequency response or a control resonator's frequency response.
    Type: Application
    Filed: April 11, 2012
    Publication date: August 2, 2012
    Inventors: Yuegang Zhang, Andrew A. Berlin, Qing Ma, Li-Peng Wang, Valluri Rao, Mineo Yamakawa
  • Patent number: 7914740
    Abstract: Systems and methods for detecting the presence of biomolecules in a sample using biosensors that incorporate resonators which have functionalized surfaces for reacting with target biomolecules. In one embodiment, a device includes a piezoelectric resonator having a functionalized surface configured to react with target molecules, thereby changing the mass and/or charge of the resonator which consequently changes the frequency response of the resonator. The resonator's frequency response after exposure to a sample is compared to a reference, such as the frequency response before exposure to the sample, a stored baseline frequency response or a control resonator's frequency response.
    Type: Grant
    Filed: December 22, 2005
    Date of Patent: March 29, 2011
    Assignee: Intel Corporation
    Inventors: Yuegang Zhang, Andrew A. Berlin, Qing Ma, Li-Peng Wang, Valluri Rao, Mineo Yamakawa
  • Publication number: 20110032301
    Abstract: The invention relates to apparatus and methods for producing three-dimensional objects and auxiliary systems used in conjunction with the aforementioned apparatus and methods. The apparatus and methods involve 3D printing and servicing of the equipment used in the associated 3D printer.
    Type: Application
    Filed: October 19, 2010
    Publication date: February 10, 2011
    Applicant: Z Corporation
    Inventors: William James Fienup, Andrew A. Berlin, Andres Tomas Hernandez, Joshua P. Kinsley, Walter H. Zengerle, III
  • Patent number: 7871569
    Abstract: Systems and methods for detecting the presence of biomolecules in a sample using biosensors that incorporate resonators which have functionalized surfaces for reacting with target biomolecules. In one embodiment, a device includes a piezoelectric resonator having a functionalized surface configured to react with target molecules, thereby changing the mass and/or charge of the resonator which consequently changes the frequency response of the resonator. The resonator's frequency response after exposure to a sample is compared to a reference, such as the frequency response before exposure to the sample, a stored baseline frequency response or a control resonator's frequency response.
    Type: Grant
    Filed: December 22, 2005
    Date of Patent: January 18, 2011
    Assignee: Intel Corporation
    Inventors: Yuegang Zhang, Andrew A. Berlin, Qing Ma, Li-Peng Wang, Valluri Rao, Mineo Yamakawa
  • Patent number: 7824001
    Abstract: The invention relates to apparatus and methods for producing three-dimensional objects and auxiliary systems used in conjunction with the aforementioned apparatus and methods. The apparatus and methods involve 3D printing and servicing of the equipment used in the associated 3D printer.
    Type: Grant
    Filed: November 30, 2004
    Date of Patent: November 2, 2010
    Assignee: Z Corporation
    Inventors: William James Fienup, Andrew A. Berlin, Andres Tomas Hernandez, Joshua P. Kinsley, Walter H. Zengerle, III
  • Publication number: 20100240870
    Abstract: Composite organic-inorganic nanoclusters (COINs) are provided that produce surface-enhanced Raman signals (SERS) when excited by a laser. The nanoclusters include metal particles and a Raman-active organic compound. The metal required for achieving a suitable SERS signal is inherent in the nanocluster and a wide variety of Raman-active organic compounds and combinations thereof can be incorporated into the nanocluster. In addition, polymeric microspheres containing the nanoclusters and methods of making them are also provided. The nanoclusters and microspheres can be used, for example, in assays for multiplex detection of biological molecules.
    Type: Application
    Filed: February 10, 2010
    Publication date: September 23, 2010
    Inventors: Xing Su, Jingwu Zhang, Lei Sun, Andrew A. Berlin