Patents by Inventor Andrew A. Burns

Andrew A. Burns has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10093036
    Abstract: A process for separating a mixture of materials using a segregation media within a vessel having a central baffle structure which shuggles the mixture by oscillating the baffle structure at a frequency and amplitude. The mixture of materials may have overlapping densities with the segregation media having a density within the overlapping region. Polymers PE and PP may be separated in flake form. For a mixture of materials of differing densities, water may be the segregation media. Shuggling is combined with controlling the flow of water through the vessel at a set velocity. Embodiments are described for separating plastics and mineral ore.
    Type: Grant
    Filed: July 27, 2015
    Date of Patent: October 9, 2018
    Assignee: IMPACT LABORATORIES LTD.
    Inventors: Surya Vesavkar, Steven Andrew Burns, Ian Vallance
  • Patent number: 10039847
    Abstract: The present invention provides a fluorescent silica-based nanoparticle that allows for precise detection, characterization, monitoring and treatment of a disease such as cancer. The nanoparticle has a range of diameters including between about 0.1 nm and about 100 nm, between about 0.5 nm and about 50 nm, between about 1 nm and about 25 nm, between about 1 nm and about 15 nm, or between about 1 nm and about 8 nm. The nanoparticle has a fluorescent compound positioned within the nanoparticle, and has greater brightness and fluorescent quantum yield than the free fluorescent compound. The nanoparticle also exhibits high biostability and biocompatibility. To facilitate efficient urinary excretion of the nanoparticle, it may be coated with an organic polymer, such as poly(ethylene glycol) (PEG). The small size of the nanoparticle, the silica base and the organic polymer coating minimizes the toxicity of the nanoparticle when administered in vivo.
    Type: Grant
    Filed: September 25, 2017
    Date of Patent: August 7, 2018
    Inventors: Michelle S. Bradbury, Ulrich Wiesner, Oula Penate Medina, Andrew Burns, Jason S. Lewis, Steven M. Larson, Thomas P. Quinn
  • Patent number: 9999694
    Abstract: The present invention provides a fluorescent silica-based nanoparticle that allows for precise detection, characterization, monitoring and treatment of a disease such as cancer. The nanoparticle has a range of diameters including between about 0.1 nm and about 100 nm, between about 0.5 nm and about 50 nm, between about 1 nm and about 25 nm, between about 1 nm and about 15 nm, or between about 1 nm and about 8 nm. The nanoparticle has a fluorescent compound positioned within the nanoparticle, and has greater brightness and fluorescent quantum yield than the free fluorescent compound. The nanoparticle also exhibits high biostability and biocompatibility. To facilitate efficient urinary excretion of the nanoparticle, it may be coated with an organic polymer, such as poly(ethylene glycol) (PEG). The small size of the nanoparticle, the silica base and the organic polymer coating minimizes the toxicity of the nanoparticle when administered in vivo.
    Type: Grant
    Filed: March 17, 2014
    Date of Patent: June 19, 2018
    Assignees: Sloan-Kettering Institute for Cancer Research, Cornell University
    Inventors: Michelle S. Bradbury, Ulrich Wiesner, Oula Penate Medina, Andrew Burns, Jason S. Lewis, Steven M. Larson
  • Patent number: 9952003
    Abstract: A heat exchanger assembly, comprising: heat exchanger pipework which comprises a plurality of elongate tube elements which extend in spaced relation and a plurality of pipe end couplings which fluidly connect open ends of respective tube elements, wherein the pipe end couplings each comprise a main body part to which the open ends of the respective tube elements are fixed, and an enclosure part which is fixed to the main body part and provides a closed fluid connection between the open ends of the respective tube elements; and a plurality of fins which extend in spaced relation and optionally substantially orthogonally to the tube elements, wherein the fins each comprise a sheet element, optionally a single, continuous sheet element, which includes a plurality of apertures through which extend respective ones of the tube elements, and a plurality of fin coupling elements which are located within respective ones of the fin apertures to interface the tube elements to the sheet elements.
    Type: Grant
    Filed: July 31, 2014
    Date of Patent: April 24, 2018
    Assignee: Clean Thermodynamic Energy Conversion Ltd
    Inventors: Michael Alan Burns, Paul Andrew Burns
  • Publication number: 20180093000
    Abstract: The present invention provides a fluorescent silica-based nanoparticle that allows for precise detection, characterization, monitoring and treatment of a disease such as cancer. The nanoparticle has a range of diameters including between about 0.1 nm and about 100 nm, between about 0.5 nm and about 50 nm, between about 1 nm and about 25 nm, between about 1 nm and about 15 nm, or between about 1 nm and about 8 nm. The nanoparticle has a fluorescent compound positioned within the nanoparticle, and has greater brightness and fluorescent quantum yield than the free fluorescent compound. The nanoparticle also exhibits high biostability and biocompatibility. To facilitate efficient urinary excretion of the nanoparticle, it may be coated with an organic polymer, such as poly(ethylene glycol) (PEG). The small size of the nanoparticle, the silica base and the organic polymer coating minimizes the toxicity of the nanoparticle when administered in vivo.
    Type: Application
    Filed: September 25, 2017
    Publication date: April 5, 2018
    Inventors: Michelle S. Bradbury, Ulrich Wiesner, Oula Penate Medina, Andrew Burns, Jason S. Lewis, Steven M. Larson, Thomas P. Quinn
  • Publication number: 20170239378
    Abstract: The present invention provides a fluorescent silica-based nanoparticle that allows for precise detection, characterization, monitoring and treatment of a disease such as cancer. The nanoparticle has a range of diameters including between about 0.1 nm and about 100 nm, between about 0.5 nm and about 50 nm, between about 1 nm and about 25 nm, between about 1 nm and about 15 nm, or between about 1 nm and about 8 nm. The nanoparticle has a fluorescent compound positioned within the nanoparticle, and has greater brightness and fluorescent quantum yield than the free fluorescent compound. The nanoparticle also exhibits high biostability and biocompatibility. To facilitate efficient urinary excretion of the nanoparticle, it may be coated with an organic polymer, such as poly(ethylene glycol) (PEG). The small size of the nanoparticle, the silica base and the organic polymer coating minimizes the toxicity of the nanoparticle when administered in vivo.
    Type: Application
    Filed: March 1, 2017
    Publication date: August 24, 2017
    Inventors: Michelle S. Bradbury, Ulrich Wiesner, Oula Penate Medina, Hooisweng Ow, Andrew Burns, Jason S. Lewis, Steven M. Larson
  • Publication number: 20170203470
    Abstract: A process for separating a mixture of materials using a segregation media within a vessel having a central baffle structure which shuggles the mixture by oscillating the baffle structure at a frequency and amplitude. The mixture of materials may have overlapping densities with the segregation media having a density within the overlapping region. Polymers PE and PP may be separated in flake form. For a mixture of materials of differing densities, water may be the segregation media. Shuggling is combined with controlling the flow of water through the vessel at a set velocity. Embodiments are described for separating plastics and mineral ore.
    Type: Application
    Filed: July 27, 2015
    Publication date: July 20, 2017
    Applicant: Impact Laboratories Ltd.
    Inventors: Surya Vesavkar, Steven Andrew Burns, Ian Vallance
  • Publication number: 20170112373
    Abstract: Systems and methods are provided for managing, optimizing subject information, recommending ophthalmologic assessments, and performing diagnostic assessments. The system includes a computing device having an image-capturing device and a display. The system includes a computer application that is executable on the computing device and operable to receive information regarding a subject, recommend ophthalmologic tests based on the information received, and perform ophthalmologic assessments on a subject. Performance of the ophthalmologic assessments causes the application to generate information regarding the ophthalmologic health of the subject, analyze the information generated, and present results of the analysis on the display.
    Type: Application
    Filed: October 24, 2016
    Publication date: April 27, 2017
    Inventors: Andrew A. Burns, Darcy Wendel, Tommy H. Tam, James M. Foley, John Michael Tamkin, Peter-Patrick de Guzman
  • Patent number: 9625456
    Abstract: The present invention provides a fluorescent silica-based nanoparticle that allows for precise detection, characterization, monitoring and treatment of a disease such as cancer The nanoparticle has a fluorescent compound positioned within the nanoparticle, and has greater brightness and fluorescent quantum yield than the free fluorescent compound To facilitate efficient urinary excretion of the nanoparticle, it may be coated with an organic polymer, such as polyethylene glycol) (PEG) The small size of the nanoparticle, the silica base and the organic polymer coating minimizes the toxicity of the nanoparticle when administered in vivo The nanoparticle may further be conjugated to a ligand capable of binding to a cellular component associated with the specific cell type, such as a tumor marker A therapeutic agent may be attached to the nanoparticle Radionuclides/radiometals or paramagnetic ions may be conjugated to the nanoparticle to permit the nanoparticle to be detectable by various imaging techniques.
    Type: Grant
    Filed: July 2, 2010
    Date of Patent: April 18, 2017
    Assignees: Sloan-Kettering Institute for Cancer Research, Cornell University
    Inventors: Michelle Bradbury, Ulrich Wiesner, Oula Penate Medina, Hoosweng Ow, Andrew Burns, Jason Lewis, Steven Larson
  • Publication number: 20160167115
    Abstract: An investment casting process for a hollow component such as a gas turbine blade utilizing a ceramic core (10) that is cast in a flexible mold (24) using a low pressure, vibration assisted casting process. The flexible mold is cast from a master tool (14) machined from soft metal using a relatively low precision machining process, with relatively higher precision surfaces being defined by a precision formed insert (22) incorporated into the master tool. A plurality of identical flexible molds may be formed from a single master tool in order to permit the production of ceramic cores at a desired rate with a desired degree of part-to-part precision.
    Type: Application
    Filed: February 23, 2016
    Publication date: June 16, 2016
    Inventors: Gary Merrill, Andrew Burns, Michael Appleby, Iain Fraser, John Paulus
  • Publication number: 20150312860
    Abstract: In a wireless media network a source device provides entertainment content to a sink device over a radio frequency (RF) wireless channel. The source device can go into a receive only quiet enrolment mode until activated by a sink device transmitting enrolment trigger packets or having a signal strength above a certain threshold, thereby improving coexistence with other wireless devices. The source device changes from the quiet enrolment mode to an active enrolment mode when activated by the sink device.
    Type: Application
    Filed: March 26, 2015
    Publication date: October 29, 2015
    Applicant: MICROCHIP TECHNOLOGY INCORPORATED
    Inventors: Ralph Mason, Andrew Burns, Chengbin Fan
  • Publication number: 20150136374
    Abstract: A heat exchanger assembly, comprising: heat exchanger pipework which comprises a plurality of elongate tube elements which extend in spaced relation and a plurality of pipe end couplings which fluidly connect open ends of respective tube elements, wherein the pipe end couplings each comprise a main body part to which the open ends of the respective tube elements are fixed, and an enclosure part which is fixed to the main body part and provides a closed fluid connection between the open ends of the respective tube elements; and a plurality of fins which extend in spaced relation and optionally substantially orthogonally to the tube elements, wherein the fins each comprise a sheet element, optionally a single, continuous sheet element, which includes a plurality of apertures through which extend respective ones of the tube elements, and a plurality of fin coupling elements which are located within respective ones of the fin apertures to interface the tube elements to the sheet elements.
    Type: Application
    Filed: July 31, 2014
    Publication date: May 21, 2015
    Inventors: Michael Alan Burns, Paul Andrew Burns
  • Publication number: 20150121875
    Abstract: A steam generator for generating a superheated fluid from a working fluid using a stream of heated gas, the steam generator comprising: a housing, which defines a gas flow path having an inlet at one, upstream end thereof into which a stream of heated gas is delivered and an outlet at the other, downstream end thereof; and a steam generation module which is disposed within the gas flow path of the housing, the steam generation module comprising a heat exchanger which receives a working fluid and is operative to raise the temperature of the working fluid to provide a saturated fluid, and a superheater which receives the saturated fluid from the heat exchanger and is operative to raise the temperature of the saturated fluid and provide a supersaturated fluid.
    Type: Application
    Filed: July 31, 2014
    Publication date: May 7, 2015
    Inventors: Michael Alan Burns, Paul Andrew Burns
  • Publication number: 20140248210
    Abstract: The present invention provides a fluorescent silica-based nanoparticle that allows for precise detection, characterization, monitoring and treatment of a disease such as cancer. The nanoparticle has a range of diameters including between about 0.1 nm and about 100 nm, between about 0.5 nm and about 50 nm, between about 1 nm and about 25 nm, between about 1 nm and about 15 nm, or between about 1 nm and about 8 nm. The nanoparticle has a fluorescent compound positioned within the nanoparticle, and has greater brightness and fluorescent quantum yield than the free fluorescent compound. The nanoparticle also exhibits high biostability and biocompatibility. To facilitate efficient urinary excretion of the nanoparticle, it may be coated with an organic polymer, such as poly(ethylene glycol) (PEG). The small size of the nanoparticle, the silica base and the organic polymer coating minimizes the toxicity of the nanoparticle when administered in vivo.
    Type: Application
    Filed: March 17, 2014
    Publication date: September 4, 2014
    Applicants: CORNELL UNIVERSITY, SLOAN-KETTERING INSTITUTE FOR CANCER RESEARCH
    Inventors: Michelle Bradbury, Ulrich Wiesner, Oula Penate Medina, Andrew Burns, Jason Lewis, Steven Larson, Tom Quinn
  • Publication number: 20140212792
    Abstract: Articles for recording a holographic image are described. The articles include a holographic recording medium having a plurality of surfaces, having a transparent polymeric binder and a photochemically active dye, the holographic recording medium having a holographic image recorded therein formed by exposed areas of the photochemically active dye and unexposed areas of the photochemically active dye; and a first light-blocking layer or material over a first surface of the holographic recording medium from which surface the holographic image is viewed, the light blocking layer or material absorbing light in the wavelength range to which the photochemically active dye is sensitive and allowing transmission of light in a different wavelength range for viewing the holographic image.
    Type: Application
    Filed: April 3, 2014
    Publication date: July 31, 2014
    Applicant: SABIC INNOVATIVE PLASTICS IP B.V.
    Inventors: Andrew A. Burns, Sumeet Jain, Pradeep Jeevaji Nadkarni, Shantaram Narayan Naik, Arunkumar Natarajan, Kiran Arunkumar Puthamane, Michael T. Takemori, Vinodkumar Vasudevan
  • Patent number: 8728685
    Abstract: Articles for recording a holographic image are described. The articles include a holographic recording medium having a plurality of surfaces, having a transparent polymeric binder and a photochemically active dye, the holographic recording medium having a holographic image recorded therein formed by exposed areas of the photochemically active dye and unexposed areas of the photochemically active dye; and a first light-blocking layer or material over a first surface of the holographic recording medium from which surface the holographic image is viewed, the light blocking layer or material absorbing light in the wavelength range to which the photochemically active dye is sensitive and allowing transmission of light in a different wavelength range for viewing the holographic image.
    Type: Grant
    Filed: February 16, 2011
    Date of Patent: May 20, 2014
    Assignee: Sabic Innovative Plastics IP B.V.
    Inventors: Andrew A. Burns, Sumeet Jain, Pradeep Jeevaji Nadkarni, Shantaram Narayan Naik, Arunkumar Natarajan, Kiran ArunKumar Puthamane, Michael T. Takemori, Vinodkumar Vasudevan
  • Patent number: 8715887
    Abstract: A method of making a hologram includes recording a first hologram in a holographic recording medium at a first deformation ratio; changing the first deformation ratio to a second deformation ratio that is different from the first deformation ratio; and recording a second hologram in the holographic recording medium at the second deformation ratio to form a recorded holographic medium.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: May 6, 2014
    Assignee: Sabic Innovative Plastics IP B.V.
    Inventors: Michael Teruki Takemori, Amitabh Bansal, Andrew A. Burns, Mark Cheverton, Sumeet Jain
  • Patent number: 8703363
    Abstract: A method is described for recording a volume reflection holographic image that is viewable when illuminated by light at a wavelength Wv.
    Type: Grant
    Filed: February 16, 2011
    Date of Patent: April 22, 2014
    Assignee: Sabic Innovative Plastic IP B.V.
    Inventors: Michael T. Takemori, Andrew A. Burns, Mark A. Cheverton, Sumeet Jain, Sora Kim
  • Patent number: 8609300
    Abstract: A method of manufacturing an article for display of a holographic image is described that includes thermally fusing a holographic recording medium containing a photochemically active dye dispersed in a transparent thermoplastic polymer binder to another layer or material; and then exposing the holographic film to intersecting beams of coherent light to form a holographic image therein formed by photoreacted areas of the photochemically active dye and unreacted areas of the photochemically active dye.
    Type: Grant
    Filed: January 6, 2011
    Date of Patent: December 17, 2013
    Assignee: Sabic Innovative Plastics IP B.V.
    Inventors: Sumeet Jain, Michael T. Takemori, Mark A. Cheverton, Vicki H. Watkins, Andrew A. Burns, Moitreyee Sinha, Matthew Frank Niemeyer
  • Patent number: 8450028
    Abstract: A method of recording a volume holographic image is described in which a holographic recording medium containing a photoreactive dye is exposed to a plurality of coherent light sources emitting at a wavelength to which the dye is sensitive, thereby forming an interference fringe pattern therein. The photoreaction occurring in the areas of constructive interference generates a periodic array of photoreacted areas of the dye and unreacted areas of the dye. This generated interference fringe pattern may contain, but does not have to contain any image or other encoded information. Selected areas of the interference fringe pattern are then exposed to actinic radiation in such a manner to partially or fully bleach, remove, or deactivate the photoreactive dye fringe pattern, thereby producing a holographic pattern, shape, or image formed by areas of the interference fringe pattern that were not bleached, removed, or deactivated.
    Type: Grant
    Filed: March 29, 2011
    Date of Patent: May 28, 2013
    Assignee: Sabic Innovative Plastics IP B.V.
    Inventors: Michael T. Takemori, Mark A. Cheverton, Andrew A. Burns, Sumeet Jain