Patents by Inventor Andrew Adamiecki

Andrew Adamiecki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9419722
    Abstract: We disclose an optical transponder, in which one or more all-electronic feedback paths are used to obtain a relatively accurate estimate of the device-specific signal distortions in the transmitter portion thereof. The obtained estimate is used to enable the digital signal processor of the optical transponder to carry out electronic pre-distortion (EPD) that can significantly reduce or cancel these signal distortions without the use of detailed factory-calibration measurements or optics dedicated to feedback purposes. The use of all-electronic feedback paths may enable a beneficial reduction in the cost of the EPD functionality, e.g., by eliminating a significant extra cost associated with the implementation of optically generated feedback.
    Type: Grant
    Filed: August 27, 2014
    Date of Patent: August 16, 2016
    Assignee: Alcatel Lucent
    Inventors: Peter J. Winzer, Andrew Adamiecki, Chandrasekhar Sethumadhavan, Gregory Raybon
  • Publication number: 20160065311
    Abstract: We disclose an optical transponder, in which one or more all-electronic feedback paths are used to obtain a relatively accurate estimate of the device-specific signal distortions in the transmitter portion thereof. The obtained estimate is used to enable the digital signal processor of the optical transponder to carry out electronic pre-distortion (EPD) that can significantly reduce or cancel these signal distortions without the use of detailed factory-calibration measurements or optics dedicated to feedback purposes. The use of all-electronic feedback paths may enable a beneficial reduction in the cost of the EPD functionality, e.g., by eliminating a significant extra cost associated with the implementation of optically generated feedback.
    Type: Application
    Filed: August 27, 2014
    Publication date: March 3, 2016
    Inventors: Peter J. Winzer, Andrew Adamiecki, Chandrasekhar Sethumadhavan, Gregory Raybon
  • Patent number: 7917042
    Abstract: A novel 100+ Gbit/s opto-electronic receiver uses hybrid integration of a photodiode and a demultiplexer. The photodiode converts a high speed optical data stream to an electrical data stream that is input to an electronic demultiplexer. The photodiode and the demultiplexer are connected together by a novel planar microwave transmission structure.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: March 29, 2011
    Assignee: Alcatel-Lucent USA Inc.
    Inventors: Andrew Adamiecki, Lawrence Buhl, Jeffrey Sinsky
  • Patent number: 7782520
    Abstract: Duobinary and NRZ modulation of an X-Gb/s optical signal is achieved with a lumped element InP Mach-Zehnder device configured to operate at X/k-Gb/s where k>1 and arranged in a push-pull configuration.
    Type: Grant
    Filed: December 28, 2006
    Date of Patent: August 24, 2010
    Assignee: Alcatel-Lucent USA Inc.
    Inventors: Andrew Adamiecki, Sethumadhavan Chandrasekhar, Christopher Doerr, David Nielson, Peter Winzer
  • Publication number: 20090003844
    Abstract: A novel 100+ Gbit/s opto-electronic receiver uses hybrid integration of a photodiode and a demultiplexer. The photodiode converts a high speed optical data stream to an electrical data stream that is input to an electronic demultiplexer. The photodiode and the demultiplexer are connected together by a novel planar microwave transmission structure.
    Type: Application
    Filed: June 29, 2007
    Publication date: January 1, 2009
    Applicant: LUCENT TECHNOLOGIES INC.
    Inventors: Andrew ADAMIECKI, Lawrence BUHL, Jeffrey SINSKY
  • Publication number: 20080158643
    Abstract: Duobinary and NRZ modulation of an X-Gb/s optical signal is achieved with a lumped element InP Mach-Zehnder device configured to operate at X/k-Gb/s where k>1 and arranged in a push-pull configuration.
    Type: Application
    Filed: December 28, 2006
    Publication date: July 3, 2008
    Applicant: LUCENT TECHNOLOGIES INC.
    Inventors: Andrew Adamiecki, Sethumadhavan Chandrasekhar, Christopher Doerr, David Neilson, Peter Winzer
  • Publication number: 20050122954
    Abstract: A (binary) signal is transmitted through an electrical backplane, and the received signal is interpreted as a duobinary signal. In order to ensure that the received signal can be properly interpreted as a duobinary signal, the data signal is preferably filtered prior to being interpreted. The filter is preferably designed such that the combination of filter and the backplane approximates a binary-to-duobinary converter. In one embodiment, an (FIR-based) equalizing filter is applied to the data signal prior to transmission to emphasize the high-frequency components and flatten the group delay of the backplane. The resulting, received duobinary signal is converted into a binary signal by (1) splitting the duobinary signal, (2) applying each copy to a suitably thresholded comparator, and (3) applying the comparator outputs to a suitable (e.g., XOR) logic gate. The transmission system enables high-speed data (e.g., greater than 10 Gb/s) to be transmitted over relatively inexpensive electrical backplanes.
    Type: Application
    Filed: December 4, 2003
    Publication date: June 9, 2005
    Inventors: Andrew Adamiecki, Jeffrey Sinsky
  • Publication number: 20050024253
    Abstract: In one embodiment, a duobinary-to-binary signal converter includes a pair of comparators coupled to a logic gate. Each comparator receives a copy of a duobinary-encoded analog signal applied to the converter and is designed to generate a binary output based on the comparison of the magnitude of the received signal with a corresponding threshold voltage. The outputs of the comparators are fed into the logic gate, which generates a binary sequence corresponding to the duobinary-encoded signal. A representative converter of the invention can perform relatively well at bit rates as high as about 40 Gb/s and can be conveniently incorporated into an appropriate integrated device (e.g., an ASIC) for a data transmission system employing duobinary signaling.
    Type: Application
    Filed: July 30, 2003
    Publication date: February 3, 2005
    Inventors: Andrew Adamiecki, Jeffrey Sinsky