Patents by Inventor Andrew Alan House

Andrew Alan House has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8326094
    Abstract: The sensor includes an optical waveguide defined in a light-transmitting medium. The waveguide includes a sensing portion and an non-sensing portion. The light-transmitting medium included in the sensing portion has defects that provide the light-transmitting medium with a deep band gap level between a valence band of the light-transmitting medium and a conduction band of the light-transmitting medium. The deep band gap level is configured such that the waveguide guiding light signals through the light-transmitting medium in the sensing portion causes free carriers to be generated in the light-transmitting medium. A detector is configured to detect the free carriers in the sensing region of the waveguide.
    Type: Grant
    Filed: September 17, 2010
    Date of Patent: December 4, 2012
    Assignee: Kotura, Inc.
    Inventors: Andrew Peter Knights, Adrian Petru Vonsovici, Dominic Joseph Brady, Andrew Alan House, George Frederick Hopper
  • Publication number: 20110013864
    Abstract: The sensor includes an optical waveguide defined in a light-transmitting medium. The waveguide includes a sensing portion and an non-sensing portion. The light-transmitting medium included in the sensing portion has defects that provide the light-transmitting medium with a deep band gap level between a valence band of the light-transmitting medium and a conduction band of the light-transmitting medium. The deep band gap level is configured such that the waveguide guiding light signals through the light-transmitting medium in the sensing portion causes free carriers to be generated in the light-transmitting medium. A detector is configured to detect the free carriers in the sensing region of the waveguide.
    Type: Application
    Filed: September 17, 2010
    Publication date: January 20, 2011
    Inventors: Andrew Peter Knights, Adrian Petru Vonsovici, Dominic Joseph Brady, Andrew Alan House, George Frederick Hopper
  • Patent number: 7826700
    Abstract: The sensor includes an optical waveguide defined in a light-transmitting medium. The waveguide includes a sensing portion and an non-sensing portion. The light-transmitting medium included in the sensing portion has defects that provide the light-transmitting medium with a deep band gap level between a valence band of the light-transmitting medium and a conduction band of the light-transmitting medium. The deep band gap level is configured such that the waveguide guiding light signals through the light-transmitting medium in the sensing portion causes free carriers to be generated in the light-transmitting medium. A detector is configured to detect the free carriers in the sensing region of the waveguide.
    Type: Grant
    Filed: April 4, 2008
    Date of Patent: November 2, 2010
    Assignee: Kotura, Inc.
    Inventors: Andrew Peter Knights, Adrian Petru Vonsovici, Dominic Joseph Brady, Andrew Alan House, George Frederick Hopper
  • Publication number: 20090127645
    Abstract: The sensor includes an optical waveguide defined in a light-transmitting medium. The waveguide includes a sensing portion and an non-sensing portion. The light-transmitting medium included in the sensing portion has defects that provide the light-transmitting medium with a deep band gap level between a valence band of the light-transmitting medium and a conduction band of the light-transmitting medium. The deep band gap level is configured such that the waveguide guiding light signals through the light-transmitting medium in the sensing portion causes free carriers to be generated in the light-transmitting medium. A detector is configured to detect the free carriers in the sensing region of the waveguide.
    Type: Application
    Filed: April 4, 2008
    Publication date: May 21, 2009
    Inventors: Andrew Peter Knights, Adrian Petru Vonsovici, Dominic Joseph Brady, Andrew Alan House, George Frederick Hopper
  • Patent number: 7386207
    Abstract: An integrated optical waveguide (1) having an in-line light sensor (2) integrally formed therewith for tapping off a small proportion of the signal transmitted along the waveguide (1). A first part (1A) of the waveguide leads to a photodiode portion (2) and a second part (1B) of the waveguide leads away from the photodiode portion (2), the photodiode portion (2) comprising one or more regions (14) of light absorbing material within the waveguide (1) arranged to absorb a minor proportion of light transmitted along the waveguide (1) and thereby to generate free charge carriers within the waveguide (1). Deep band gap levels (21) are introduced into photodiode portion by ion implantation to enable it to absorb selected wavelengths. The free charge carriers are detected by a p-i-n diode formed across the waveguide (1). Wavelength selective reflectors (11, 12) may be provided either side of the photodiode portion (2) so light passes repeatedly through the photodiode portion (2).
    Type: Grant
    Filed: December 27, 2002
    Date of Patent: June 10, 2008
    Assignee: Kotura, Inc.
    Inventors: Andrew Peter Knights, Adrian Petru Vonsovici, Dominic Joseph Brady, Andrew Alan House, George Frederick Hopper
  • Publication number: 20040151460
    Abstract: An integrated optical device comprising at least one optical waveguide (1) formed on a substrate, the waveguide (1) being of elongate form with an optical axis extending along its length, at least one interceptor trench (3, 4, 5 or 6) being provided in the substrate adjacent at least one side of the waveguide (1), the trench (3, 4, 5,6) presenting a surface to intercept stray light travelling in the substrate in a direction substantially parallel to the optical axis of the waveguide (1), said surface being angled with respect to the direction of travel of said stray light so as to alter the direction of travel of the stray light intercepted thereby.
    Type: Application
    Filed: December 1, 2003
    Publication date: August 5, 2004
    Inventors: Daniel Kitcher, Ian Edward Day, Ralf Dieter Pechstedt, Andrew Alan House
  • Patent number: 6628852
    Abstract: An isolation device that can be used for providing optical and electrical isolation between areas of an integrated chip. The isolation device includes three doped elongate regions which form diodes which can be connected in series. The isolation device can be used in optical devices or optical attenuators.
    Type: Grant
    Filed: May 8, 2001
    Date of Patent: September 30, 2003
    Assignee: Bookham Technology PLC
    Inventors: Andrew Alan House, Ian Edward Day, George Frederick Hopper
  • Publication number: 20020190337
    Abstract: A device 102 incorporating a sensor 106 for sensing a temperature of the device and/or a local heater 106 for the provision of heat to a minority area within the device, wherein the sensor and/or the local heater comprises at least one semiconductor element 302,804 which is fabricated as part of the device.
    Type: Application
    Filed: May 7, 2002
    Publication date: December 19, 2002
    Applicant: Bookham Technology PLC
    Inventors: Andrew Alan House, Ian Edward Day
  • Publication number: 20020126939
    Abstract: An isolation device that can be used for providing optical and electrical isolation between areas of an integrated chip. The isolation device includes three doped elongate regions which form diodes which can be connected in series. The isolation device can be used in optical devices or optical attenuators.
    Type: Application
    Filed: May 8, 2001
    Publication date: September 12, 2002
    Applicant: Bookham Technology PLC
    Inventors: Andrew Alan House, Ian Edward Day, George Frederick Hopper
  • Patent number: 6298177
    Abstract: An optical phase modulator comprises a semiconductor rib wave guide having P and N doped regions forming a PN junction along the path of the rib with terminals for applying a reverse bias to the junction to extend a carrier depletion zone to alter the refractive index, the PN junction is offset from the central axis of the rib but on application of the reverse bias the depletion zone extends over a central axis of the waveguide.
    Type: Grant
    Filed: March 23, 2000
    Date of Patent: October 2, 2001
    Assignee: Bookham Technology PLC
    Inventor: Andrew Alan House