Patents by Inventor Andrew ALLEYNE

Andrew ALLEYNE has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160297986
    Abstract: Provided are methods of patterning block copolymer (BCP) films with independent control of the size, periodicity and morphology of the resulting nanoscale domains. Also disclosed are BCP patterns having discrete areas of different self-assembled BCP thin films on a surface, the BCP thin films differing in one or more of molecular weight (MW), composition, morphology, and feature size. In some implementations, multiple BCPs with different MWs can be printed onto a single substrate, thereby providing access to patterns with diverse geometries and feature sizes. The printing approaches can be applied to various BCP chemistries, morphologies and directed self-assembly (DSA) strategies. Also provided are methods of forming BCP thin films on patterns of polymer brushes formed by electrohydrodynamic printing. The methods involve direct, high resolution electrohydrodynamic delivery of random copolymer brushes as surface wetting layers to control the geometries of nanoscale domains in spin-cast and printed BCPs.
    Type: Application
    Filed: August 14, 2014
    Publication date: October 13, 2016
    Inventors: Mustafa Serdar Onses, John A. Rogers, Placid Ferreira, Andrew Alleyne, Paul Franklin Nealey
  • Patent number: 9278522
    Abstract: Provided are various methods and devices for electrohydrodynamic (E-jet) printing. The methods relate to sensing of an output current during printing to provide control of a process parameter during printing. The sensing and control provides E-jet printing having improved print resolution and precision compared to conventional open-loop methods. Also provided are various pulsing schemes to provide high frequency E-jet printing, thereby reducing build times by two to three orders of magnitude. A desktop sized E-jet printer having a sensor for real-time sensing of an electrical parameter and feedback control of the printing is provided.
    Type: Grant
    Filed: September 23, 2013
    Date of Patent: March 8, 2016
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Andrew Alleyne, Kira Barton, Sandipan Mishra, Placid Ferreira, John Rogers
  • Publication number: 20140092158
    Abstract: Provided are various methods and devices for electrohydrodynamic (E-jet) printing. The methods relate to sensing of an output current during printing to provide control of a process parameter during printing. The sensing and control provides E-jet printing having improved print resolution and precision compared to conventional open-loop methods. Also provided are various pulsing schemes to provide high frequency E-jet printing, thereby reducing build times by two to three orders of magnitude. A desktop sized E-jet printer having a sensor for real-time sensing of an electrical parameter and feedback control of the printing is provided.
    Type: Application
    Filed: September 23, 2013
    Publication date: April 3, 2014
    Inventors: Andrew ALLEYNE, Kira BARTON, Sandipan MISHRA, Placid FERREIRA, John ROGERS
  • Patent number: 8562095
    Abstract: Provided are various methods and devices for electrohydrodynamic (E-jet) printing. The methods relate to sensing of an output current during printing to provide control of a process parameter during printing. The sensing and control provides E-jet printing having improved print resolution and precision compared to conventional open-loop methods. Also provided are various pulsing schemes to provide high frequency E-jet printing, thereby reducing build times by two to three orders of magnitude. A desk-top sized E-jet printer having a sensor for real-time sensing of an electrical parameter and feedback control of the printing is provided.
    Type: Grant
    Filed: November 1, 2010
    Date of Patent: October 22, 2013
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Andrew Alleyne, Kira Barton, Sandipan Mishra, Placid Ferreira, John Rogers
  • Publication number: 20120105528
    Abstract: Provided are various methods and devices for electrohydrodynamic (E-jet) printing. The methods relate to sensing of an output current during printing to provide control of a process parameter during printing. The sensing and control provides E-jet printing having improved print resolution and precision compared to conventional open-loop methods. Also provided are various pulsing schemes to provide high frequency E-jet printing, thereby reducing build times by two to three orders of magnitude. A desk-top sized E-jet printer having a sensor for real-time sensing of an electrical parameter and feedback control of the printing is provided.
    Type: Application
    Filed: November 1, 2010
    Publication date: May 3, 2012
    Inventors: Andrew ALLEYNE, Kira BARTON, Sandipan MISHRA, Placid FERREIRA, John ROGERS