Patents by Inventor Andrew Antonelli
Andrew Antonelli has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
SYSTEM AND METHOD FOR PERFORMING CHARACTERIZATION OF A SAMPLE USING MULTI-WAVELENGTH LASER ACOUSTICS
Publication number: 20250189446Abstract: An opto-acoustic metrology device, such as a picosecond laser acoustic metrology device, includes a laser light source that generates pulsed light with a first wavelength and a supercontinuum generator spectrally broadens the pulsed light. A pump arm receives the pulsed light and generates pump pulses to irradiate a target sample to cause transient perturbation in the target sample. A probe arm receives the pulse light and generates probe pulses to irradiate the target sample to produce reflected probe pulses that are modulated based on the transient perturbation in the target sample. The pump pulses and the probe pulses have different wavelengths or the same wavelengths that are selected from the spectrally broadened pulsed light, e.g., using a filter located before the pump and probe arms or within one of the pump or probe arms. A property of the target sample may be determined based on reflected probe pulses.Type: ApplicationFiled: March 31, 2022Publication date: June 12, 2025Applicant: Onto Innovation Inc.Inventors: Manjusha Mehendale, George Andrew Antonelli -
Publication number: 20250189605Abstract: An optical metrology device includes a selectable pump arm that is used to produce a transient response in the target sample and a probe arm and may be configured to perform static Magneto-Optic Kerr Effect (MOKE) measurements or ellipsometry measurements when the pump arm is not selected, and time resolved (TR) MOKE measurements or ellipsometry measurements when the pump arm is selected. The optical metrology device may be further configured to perform opto-acoustic measurements when the pump arm is selected. A pulse shaper in the pump arm may be used to pulse duration, phase, or both, of the incident pump beam to enable measurement of the dependence of the magnetic dynamics on the pump pulse characteristics. The optical metrology device may be configured to operate at a single selectable wavelength or multiple wavelengths in a continuous or discontinuous spectrum.Type: ApplicationFiled: March 31, 2022Publication date: June 12, 2025Applicant: Onto Innovation Inc.Inventors: Manjusha Mehendale, George Andrew Antonelli, Robin A. Mair, Priya Mukundhan
-
Publication number: 20250053080Abstract: Vacuum-integrated photoresist-less methods and apparatuses for forming metal hardmasks can provide sub-30 nm patterning resolution. A metal-containing (e.g., metal salt or organometallic compound) film that is sensitive to a patterning agent is deposited on a semiconductor substrate. The metal-containing film is then patterned directly (i.e., without the use of a photoresist) by exposure to the patterning agent in a vacuum ambient to form the metal mask. For example, the metal-containing film is photosensitive and the patterning is conducted using sub-30 nm wavelength optical lithography, such as EUV lithography.Type: ApplicationFiled: October 30, 2024Publication date: February 13, 2025Inventors: Jeffrey Marks, George Andrew Antonelli, Richard A. Gottscho, Dennis M. Hausmann, Adrien LaVoie, Thomas Joseph Knisley, Sirish K. Reddy, Bhadri N. Varadarajan, Artur Kolics
-
Publication number: 20240337627Abstract: A time resolved reflectivity metrology device images structures underlying layers using a pulsed pump beam and pulsed probe beam with at least one time delay between the pulses. One or both beams are modulated. A camera with a multi-pixel array and independent phase locking for each pixel in the multi-pixel array receives and demodulates the reflected probe beam to generate images. The camera may record a change in reflectivity or surface deformation of the target sample at every pixel as a function of at least one time delay between the pump pulses and the probe pulses, with which at least one property of the target sample may be characterized.Type: ApplicationFiled: April 4, 2024Publication date: October 10, 2024Applicant: Onto Innovation Inc.Inventors: Manjusha MEHENDALE, George Andrew ANTONELLI, Nigel P. SMITH, Marco ALVES, Mahboobe JASSAS
-
Publication number: 20240329005Abstract: An opto-acoustic metrology device is configured to measure or inspect structures in a sample using both vertical and lateral transient perturbations. Multiple probe beams that have different locations of incidence may detect both the vertical and lateral transient perturbations produced by a pump beam, or a single probe beam may detect both the vertical and lateral transient perturbations produced by multiple pump beams that have different locations of incidence. The multiple probe beams or multiple pump beams are modulated with orthogonal waveforms, which allow the measurement of the different locations without interference from one another. The received signals are demodulated based on the orthogonal waveforms to recover the contributions to the received signals associated with each of the multiple probe beams or each of the multiple pump beams.Type: ApplicationFiled: March 21, 2024Publication date: October 3, 2024Applicant: Onto Innovation Inc.Inventors: Michael J. Kotelyanskii, Manjusha Mehendale, George Andrew Antonelli, Robin A. Mair
-
Patent number: 11874229Abstract: An optical metrology device performs multi-wavelength polarized confocal Raman spectroscopy. The optical metrology device uses a first light source to produce a first light beam with a first wavelength and a second light source to produce a second light beam with a second wavelength. A dichroic beam splitter partially reflects the first light beam and transmits the second light beam to combine the light beams along a same optical axis that is incident on a sample. The dichroic beam splitter directs the Raman response emitted from the sample in response to the first light beam and the second light beam together towards at least one spectrometer and directs the first light beam away from the at least one spectrometer. A chopper may be used to isolate the Raman response to the first and second light beams that is received and spectrally measured by the at least one spectrometer.Type: GrantFiled: April 7, 2022Date of Patent: January 16, 2024Assignee: Onto Innovation Inc.Inventor: George Andrew Antonelli
-
Publication number: 20240004311Abstract: An alignment or overlay target that has an optically opaque layer disposed between the top and bottom target structure is measured using opto-acoustic metrology. A classifier library is generated for classifying whether an opto-acoustic metrology signal is on or off the bottom structure. A target may be measured by acquiring opto-acoustic measurement data for the bottom structure of the target and determining a location of the bottom structure using opto-acoustic metrology data acquired from the different locations over the bottom structure and the classifier library. Locations for acquisition of the data may be based on classification results of each measurement and a search pattern. The top structure of the target may be optically imaged. The relative position of the top structure with respect to the bottom structure is determined using the opto-acoustically determined location of the bottom structure and the image of the top structure.Type: ApplicationFiled: November 22, 2021Publication date: January 4, 2024Applicant: Onto Innovation Inc.Inventors: Manjusha Mehendale, George Andrew Antonelli, Priya Mukundhan, Robin A. Mair, Francis C. Vozzo
-
Publication number: 20230366094Abstract: An apparatus for depositing film stacks in-situ (i.e., without a vacuum break or air exposure) are described. In one example, a plasma-enhanced chemical vapor deposition apparatus configured to deposit a plurality of film layers on a substrate without exposing the substrate to a vacuum break between film deposition phases, is provided. The apparatus includes a process chamber, a plasma source and a controller configured to control the plasma source to generate reactant radicals using a particular reactant gas mixture during the particular deposition phase, and sustain the plasma during a transition from the particular reactant gas mixture supplied during the particular deposition phase to a different reactant gas mixture supplied during a different deposition phase.Type: ApplicationFiled: July 13, 2023Publication date: November 16, 2023Inventors: Jason Dirk Haverkamp, Pramod Subramonium, Joseph L. Womack, Dong Niu, Keith Fox, John B. Alexy, Patrick G. Breiling, Jennifer L. Petraglia, Mandyam A. Sriram, George Andrew Antonelli, Bart J. van Schravendijk
-
Patent number: 11808715Abstract: A metrology target is designed for measuring a feature at the bottom of a trench in a device under test, such as a tungsten recess vertical profile in a wordline in a three-dimensional (3D) NAND. The metrology target follows the design rules for the device under test and includes a tier stack with a plurality of tier stack pairs including, each including a conductor layer, such as tungsten, and an insulator layer, such as silicon dioxide and a trench that extends through the tier stack pairs. The metrology target includes a via that extends through the tier stack pairs and is positioned a lateral distance to the trench to promote access of light to a bottom of the trench, via plasmonic resonance, for measurement of a characteristic of the trench, such as the tungsten recess at the bottom of the wordline slit.Type: GrantFiled: April 15, 2021Date of Patent: November 7, 2023Assignee: Onto Innovation Inc.Inventors: Nicholas James Keller, George Andrew Antonelli
-
Publication number: 20230324303Abstract: An optical metrology device performs multi-wavelength polarized confocal Raman spectroscopy. The optical metrology device uses a first light source to produce a first light beam with a first wavelength and a second light source to produce a second light beam with a second wavelength. A dichroic beam splitter partially reflects the first light beam and transmits the second light beam to combine the light beams along a same optical axis that is incident on a sample. The dichroic beam splitter directs the Raman response emitted from the sample in response to the first light beam and the second light beam together towards at least one spectrometer and directs the first light beam away from the at least one spectrometer. A chopper may be used to isolate the Raman response to the first and second light beams that is received and spectrally measured by the at least one spectrometer.Type: ApplicationFiled: April 7, 2022Publication date: October 12, 2023Inventor: George Andrew ANTONELLI
-
Publication number: 20230273516Abstract: Vacuum-integrated photoresist-less methods and apparatuses for forming metal hardmasks can provide sub-30 nm patterning resolution. A metal-containing (e.g., metal salt or organometallic compound) film that is sensitive to a patterning agent is deposited on a semiconductor substrate. The metal-containing film is then patterned directly (i.e., without the use of a photoresist) by exposure to the patterning agent in a vacuum ambient to form the metal mask. For example, the metal-containing film is photosensitive and the patterning is conducted using sub-30 nm wavelength optical lithography, such as EUV lithography.Type: ApplicationFiled: April 10, 2023Publication date: August 31, 2023Inventors: Jeffrey MARKS, George Andrew ANTONELLI, Richard A. GOTTSCHO, Dennis M. HAUSMANN, Adrien LAVOIE, Thomas Joseph KNISLEY, Sirish K. REDDY, Bhadri N. VARADARAJAN, Artur KOLICS
-
Publication number: 20230266662Abstract: Vacuum-integrated photoresist-less methods and apparatuses for forming metal hardmasks can provide sub-30 nm patterning resolution. A metal-containing (e.g., metal salt or organometallic compound) film that is sensitive to a patterning agent is deposited on a semiconductor substrate. The metal-containing film is then patterned directly (i.e., without the use of a photoresist) by exposure to the patterning agent in a vacuum ambient to form the metal mask. For example, the metal-containing film is photosensitive and the patterning is conducted using sub-30 nm wavelength optical lithography, such as EUV lithography.Type: ApplicationFiled: April 10, 2023Publication date: August 24, 2023Inventors: Jeffrey MARKS, George Andrew ANTONELLI, Richard A. GOTTSCHO, Dennis M. HAUSMANN, Adrien LAVOIE, Thomas Joseph KNISLEY, Sirish K. REDDY, Bhadri N. VARADARAJAN, Artur KOLICS
-
Patent number: 11668644Abstract: A non-destructive opto-acoustic metrology device detects the presence and location of non-uniformities in a film stack that includes a large number, e.g., 50 or more, transparent layers. A transducer layer at the bottom of the film stack produces an acoustic wave in response to an excitation beam. A probe beam is reflected from the layer interfaces of the film stack and the acoustic wave to produce an interference signal that encodes data in a time domain from destructive and constructive interference as the acoustic wave propagates upward in the film stack. The data may be analyzed across the time domain to determine the presence and location of one or more non-uniformities in the film stack. An acoustic metrology target may be produced with a transducer layer configured to generate an acoustic wave with a desired acoustic profile based on characteristics of the film stack.Type: GrantFiled: March 30, 2021Date of Patent: June 6, 2023Assignee: Onto Innovation Inc.Inventors: George Andrew Antonelli, Manjusha S. Mehendale, Robin Mair, Nicholas James Keller
-
Publication number: 20220317025Abstract: A non-destructive opto-acoustic metrology device detects the presence and location of non-uniformities in a film stack that includes a large number, e.g., 50 or more, transparent layers. A transducer layer at the bottom of the film stack produces an acoustic wave in response to an excitation beam. A probe beam is reflected from the layer interfaces of the film stack and the acoustic wave to produce an interference signal that encodes data in a time domain from destructive and constructive interference as the acoustic wave propagates upward in the film stack. The data may be analyzed across the time domain to determine the presence and location of one or more non-uniformities in the film stack. An acoustic metrology target may be produced with a transducer layer configured to generate an acoustic wave with a desired acoustic profile based on characteristics of the film stack.Type: ApplicationFiled: March 30, 2021Publication date: October 6, 2022Inventors: George Andrew Antonelli, Manjusha S. Mehendale, Robin Mair, Nicholas James Keller
-
Publication number: 20220075260Abstract: Vacuum-integrated photoresist-less methods and apparatuses for forming metal hardmasks can provide sub-30 nm patterning resolution. A metal-containing (e.g., metal salt or organometallic compound) film that is sensitive to a patterning agent is deposited on a semiconductor substrate. The metal-containing film is then patterned directly (i.e., without the use of a photoresist) by exposure to the patterning agent in a vacuum ambient to form the metal mask. For example, the metal-containing film is photosensitive and the patterning is conducted using sub-30 nm wavelength optical lithography, such as EUV lithography.Type: ApplicationFiled: November 16, 2021Publication date: March 10, 2022Applicant: Lam Research CorporationInventors: Jeffrey Marks, George Andrew Antonelli, Richard A. Gottscho, Dennis M. Hausmann, Adrien LaVoie, Thomas Joseph Knisley, Sirish K. Reddy, Bhadri N. Varadarajan, Artur Kolics
-
Patent number: 11209729Abstract: Vacuum-integrated photoresist-less methods and apparatuses for forming metal hardmasks can provide sub-30 nm patterning resolution. A metal-containing (e.g., metal salt or organometallic compound) film that is sensitive to a patterning agent is deposited on a semiconductor substrate. The metal-containing film is then patterned directly (i.e., without the use of a photoresist) by exposure to the patterning agent in a vacuum ambient to form the metal mask. For example, the metal-containing film is photosensitive and the patterning is conducted using sub-30 nm wavelength optical lithography, such as EUV lithography.Type: GrantFiled: November 21, 2019Date of Patent: December 28, 2021Assignee: Lam Research CorporationInventors: Jeffrey Marks, George Andrew Antonelli, Richard A. Gottscho, Dennis M. Hausmann, Adrien LaVoie, Thomas Joseph Knisley, Sirish K. Reddy, Bhadri N. Varadarajan, Artur Kolics
-
Patent number: 11162897Abstract: A metrology device that can determine at least one characteristics of a sample is disclosed. The metrology device includes an optical system that uses spatially coherent light with a first and a second objective lens as well as a detector that detects light reflected from the sample. The objective lenses use numerical apertures sufficient to produce a small probe size, e.g., less than 200 ?m, while a spatial filter is used to reduce the effective numerical aperture of the optical system as seen by the detector to avoid loss of information and demanding computation requirements caused by the large angular spread due to large numerical apertures. The spatial filter permits light to pass in a desired range of angles, while blocking the remaining light and is positioned to prevent use of the full spatial extent of at least one of the first objective lens and the second objective lens.Type: GrantFiled: May 13, 2020Date of Patent: November 2, 2021Assignee: Onto Innovation Inc.Inventors: George Andrew Antonelli, Troy Daniel Ribaudo, Michael J. Hammond
-
Publication number: 20210325317Abstract: A metrology target is designed for measuring a feature at the bottom of a trench in a device under test, such as a tungsten recess vertical profile in a wordline in a three-dimensional (3D) NAND. The metrology target follows the design rules for the device under test and includes a tier stack with a plurality of tier stack pairs including, each including a conductor layer, such as tungsten, and an insulator layer, such as silicon dioxide and a trench that extends through the tier stack pairs. The metrology target includes a via that extends through the tier stack pairs and is positioned a lateral distance to the trench to promote access of light to a bottom of the trench, via plasmonic resonance, for measurement of a characteristic of the trench, such as the tungsten recess at the bottom of the wordline slit.Type: ApplicationFiled: April 15, 2021Publication date: October 21, 2021Inventors: Nicholas JAMES KELLER, George Andrew ANTONELLI
-
Patent number: 10901241Abstract: An optical metrology device produces beams of light with varying wavelengths in a spectral range for measurement of a sample that is at least partially transparent to the spectral range. The light is obliquely incident on the sample, where a portion of the light is reflected off the top surface and a portion is transmitted through the sample and is reflected off the bottom surface. The incident light and/or reflected light is polarized and a phase modulator, such as a photoelastic modulator or electrooptic modulator, is adjusted based on the wavelengths in each beam of light to produce a same retardation of polarization for each beam of light. The reflected light that is received by a detector does not include light reflected from the bottom surface of the sample. A characteristic of a buried structure below the top surface of the sample is determined using the detected reflected light.Type: GrantFiled: March 13, 2019Date of Patent: January 26, 2021Assignee: Onto Innovation Inc.Inventors: George Andrew Antonelli, Troy Daniel Ribaudo
-
Publication number: 20200363332Abstract: A metrology device that can determine at least one characteristics of a sample is disclosed. The metrology device includes an optical system that uses spatially coherent light with a first and a second objective lens as well as a detector that detects light reflected from the sample. The objective lenses use numerical apertures sufficient to produce a small probe size, e.g., less than 200 ?m, while a spatial filter is used to reduce the effective numerical aperture of the optical system as seen by the detector to avoid loss of information and demanding computation requirements caused by the large angular spread due to large numerical apertures. The spatial filter permits light to pass in a desired range of angles, while blocking the remaining light and is positioned to prevent use of the full spatial extent of at least one of the first objective lens and the second objective lens.Type: ApplicationFiled: May 13, 2020Publication date: November 19, 2020Inventors: George Andrew Antonelli, Troy Daniel Ribaudo, Michael J. Hammond