Patents by Inventor Andrew B. Bocarsly

Andrew B. Bocarsly has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240360576
    Abstract: Disclosed is a technique for reducing CO2 to oxalate utilizing a copper-free, nickel-enhanced electrocatalyst (such as a nickel-enhanced (Cr2O3)3(Ga2O3) electrocatalyst) that can be used for producing, e.g., 1-butanol, in exceedingly high yields. Disclosed herein are various synthetic methodologies for introducing nickel into the electrocatalysts, and described is the characterization, and optimization of the Ni enhanced electrocatalysts for the reduction of CO2 to 1-butanol with a maximum faradaic efficiency ?max of 64%, at an overpotential of 900 mV (?1.48 V vs Ag/AgCl), and having an onset overpotential of 320 mV. The product selectivity is potential dependent with other C2+ products such as 3-hydroxybutanal, (?max 63%) at an overpotential of 890 mV (?1.4 V vs Ag/AgCl); acetic acid with ?max 18% at an overpotential of 390 mV (?1.0 V vs Ag/AgCl); and acetone with ?max 10% at an overpotential of 620 mV (?1.2 V).
    Type: Application
    Filed: April 29, 2024
    Publication date: October 31, 2024
    Applicant: The Trustees of Princeton University
    Inventors: Andrew B. Bocarsly, Steven Cronin, Stephanie Dulovic, Kai Filsinger, Josef Lawrence
  • Patent number: 10787750
    Abstract: A method reducing carbon dioxide to one or more organic products may include steps (A) to (E). Step (A) may introduce an anolyte to a first compartment of an electrochemical cell. The first compartment may include an anode. Step (B) may introduce a catholyte and carbon dioxide to a second compartment of the electrochemical cell. Step (C) may oxidize an indium cathode to produce an oxidized indium cathode. Step (D) may introduce the oxidized indium cathode to the second compartment. Step (E) may apply an electrical potential between the anode and the oxidized indium cathode sufficient for the oxidized indium cathode to reduce the carbon dioxide to a reduced product.
    Type: Grant
    Filed: October 5, 2018
    Date of Patent: September 29, 2020
    Assignees: The Trustees of Princeton University, Avantium Knowledge Centre B.V.
    Inventors: Andrew B. Bocarsly, Zachary M. Detweiler
  • Publication number: 20190032229
    Abstract: A method reducing carbon dioxide to one or more organic products may include steps (A) to (E). Step (A) may introduce an anolyte to a first compartment of an electrochemical cell. The first compartment may include an anode. Step (B) may introduce a catholyte and carbon dioxide to a second compartment of the electrochemical cell. Step (C) may oxidize an indium cathode to produce an oxidized indium cathode. Step (D) may introduce the oxidized indium cathode to the second compartment. Step (E) may apply an electrical potential between the anode and the oxidized indium cathode sufficient for the oxidized indium cathode to reduce the carbon dioxide to a reduced product.
    Type: Application
    Filed: October 5, 2018
    Publication date: January 31, 2019
    Inventors: Andrew B. Bocarsly, Zachary M. Detweiler
  • Patent number: 10100417
    Abstract: A method reducing carbon dioxide to one or more organic products may include steps (A) to (E). Step (A) may introduce an anolyte to a first compartment of an electrochemical cell. The first compartment may include an anode. Step (B) may introduce a catholyte and carbon dioxide to a second compartment of the electrochemical cell. Step (C) may oxidize an indium cathode to produce an oxidized indium cathode. Step (D) may introduce the oxidized indium cathode to the second compartment. Step (E) may apply an electrical potential between the anode and the oxidized indium cathode sufficient for the oxidized indium cathode to reduce the carbon dioxide to a reduced product.
    Type: Grant
    Filed: August 23, 2013
    Date of Patent: October 16, 2018
    Assignees: The Trustees of Princeton University, Avantium Knowledge Centre B.V.
    Inventors: Andrew B. Bocarsly, Zachary M. Detweiler
  • Patent number: 9970117
    Abstract: A method for heterocycle catalyzed electrochemical reduction of a carbonyl compound is disclosed. The method generally includes steps (A) to (C). Step (A) may introduce the carbonyl compound into a solution of an electrolyte and a heterocycle catalyst in a divided electrochemical cell. The divided electrochemical cell may include an anode in a first cell compartment and a cathode in a second cell compartment. The cathode generally reduces the carbonyl compound to at least one aldehyde compound. Step (B) may vary which of the aldehyde compounds is produced by adjusting one or more of (i) a cathode material, (ii) the electrolyte, (iii) the heterocycle catalyst, (iv) a pH level and (v) an electrical potential. Step (C) may separate the aldehyde compounds from the solution.
    Type: Grant
    Filed: September 17, 2014
    Date of Patent: May 15, 2018
    Assignees: Princeton University, Avantium Knowledge Centre B.V.
    Inventors: Emily Barton Cole, Andrew B. Bocarsly
  • Patent number: 9222179
    Abstract: A method for purification of carbon dioxide from a mixture of gases is disclosed. The method generally includes steps (A) and (B). Step (A) may bubble the gases into a solution of an electrolyte and a catalyst in an electrochemical cell. The electrochemical cell may include an anode in a first cell compartment and a cathode in a second cell compartment. The cathode generally reduces the carbon dioxide into one or more compounds. The anode may oxidize at least one of the compounds into the carbon dioxide. Step (B) may separate the carbon dioxide from the solution.
    Type: Grant
    Filed: June 21, 2013
    Date of Patent: December 29, 2015
    Assignee: Liquid Light, Inc.
    Inventors: Kyle Teamey, Emily Barton Cole, Narayanappa Sivasankar, Andrew B. Bocarsly
  • Publication number: 20150337444
    Abstract: Methods and systems for electrochemical production of butanol are disclosed. A method may include, but is not limited to, steps (A) to (D). Step (A) may introduce water to a first compartment of an electrochemical cell. The first compartment may include an anode. Step (B) may introduce carbon dioxide to a second compartment of the electrochemical cell. The second compartment may include a solution of an electrolyte, a catalyst, and a cathode. Step (C) may apply an electrical potential between the anode and the cathode in the electrochemical cell sufficient for the cathode to reduce the carbon dioxide to a product mixture. Step (D) may separate butanol from the product mixture.
    Type: Application
    Filed: February 23, 2015
    Publication date: November 26, 2015
    Inventors: Emily Barton Cole, Kyle Teamey, Andrew B. Bocarsly, Narayanappa Sivasankar
  • Publication number: 20150218716
    Abstract: A method reducing carbon dioxide to one or more organic products may include steps (A) to (E). Step (A) may introduce an anolyte to a first compartment of an electrochemical cell. The first compartment may include an anode. Step (B) may introduce a catholyte and carbon dioxide to a second compartment of the electrochemical cell. Step (C) may oxidize an indium cathode to produce an oxidized indium cathode. Step (D) may introduce the oxidized indium cathode to the second compartment. Step (E) may apply an electrical potential between the anode and the oxidized indium cathode sufficient for the oxidized indium cathode to reduce the carbon dioxide to a reduced product.
    Type: Application
    Filed: August 23, 2013
    Publication date: August 6, 2015
    Inventors: Andrew B. Bocarsly, Zachary M. Detweiler
  • Patent number: 8986533
    Abstract: The invention relates to various embodiments of an environmentally beneficial method for reducing carbon dioxide. The methods in accordance with the invention include electrochemically or photoelectrochemically reducing the carbon dioxide in a divided electrochemical cell that includes an anode, e.g., an inert metal counterelectrode, in one cell compartment and a metal or p-type semiconductor cathode electrode in another cell compartment that also contains an aqueous solution of an electrolyte and a catalyst of one or more substituted or unsubstituted aromatic amines to produce therein a reduced organic product.
    Type: Grant
    Filed: May 15, 2012
    Date of Patent: March 24, 2015
    Assignee: Princeton University
    Inventors: Andrew B. Bocarsly, Emily Barton Cole
  • Patent number: 8961774
    Abstract: Methods and systems for electrochemical production of butanol are disclosed. A method may include, but is not limited to, steps (A) to (D). Step (A) may introduce water to a first compartment of an electrochemical cell. The first compartment may include an anode. Step (B) may introduce carbon dioxide to a second compartment of the electrochemical cell. The second compartment may include a solution of an electrolyte, a catalyst, and a cathode. Step (C) may apply an electrical potential between the anode and the cathode in the electrochemical cell sufficient for the cathode to reduce the carbon dioxide to a product mixture. Step (D) may separate butanol from the product mixture.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: February 24, 2015
    Assignee: Liquid Light, Inc.
    Inventors: Emily Barton Cole, Kyle Teamey, Andrew B. Bocarsly, Narayanappa Sivasankar
  • Publication number: 20150047987
    Abstract: A method for heterocycle catalyzed electrochemical reduction of a carbonyl compound is disclosed. The method generally includes steps (A) to (C). Step (A) may introduce the carbonyl compound into a solution of an electrolyte and a heterocycle catalyst in a divided electrochemical cell. The divided electrochemical cell may include an anode in a first cell compartment and a cathode in a second cell compartment. The cathode generally reduces the carbonyl compound to at least one aldehyde compound. Step (B) may vary which of the aldehyde compounds is produced by adjusting one or more of (i) a cathode material, (ii) the electrolyte, (iii) the heterocycle catalyst, (iv) a pH level and (v) an electrical potential. Step (C) may separate the aldehyde compounds from the solution.
    Type: Application
    Filed: September 17, 2014
    Publication date: February 19, 2015
    Inventors: Emily Barton Cole, Andrew B. Bocarsly
  • Publication number: 20140367274
    Abstract: The present disclosure is a system and method for producing a first product from a first region of an electrochemical cell having a cathode and a second product from a second region of the electrochemical cell having an anode. The method may include the step of contacting the first region of the electrochemical cell with a catholyte comprising an alcohol and carbon dioxide. Another step of the method may include contacting the second region of the electrochemical cell with an anolyte comprising the alcohol. Further, the method may include a step of applying an electrical potential between the anode and the cathode sufficient to produce a first product recoverable from the first region and a second product recoverable from the second region.
    Type: Application
    Filed: August 27, 2014
    Publication date: December 18, 2014
    Inventors: Kyle Teamey, Jerry Kaczur, Emily Barton Cole, Paul Majsztrik, Narayanappa Sivasankar, Andrew B. Bocarsly
  • Patent number: 8845875
    Abstract: The present disclosure is a system and method for producing a first product from a first region of an electrochemical cell having a cathode and a second product from a second region of the electrochemical cell having an anode. The method may include the step of contacting the first region of the electrochemical cell with a catholyte comprising an alcohol and carbon dioxide. Another step of the method may include contacting the second region of the electrochemical cell with an anolyte comprising the alcohol. Further, the method may include a step of applying an electrical potential between the anode and the cathode sufficient to produce a first product recoverable from the first region and a second product recoverable from the second region.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: September 30, 2014
    Assignee: Liquid Light, Inc.
    Inventors: Kyle Teamey, Jerry J. Kaczur, Emily Barton Cole, Paul Majsztrik, Narayanappa Sivasankar, Andrew B. Bocarsly
  • Patent number: 8821709
    Abstract: Methods and systems for electrochemically generating an oxidation product and a reduction product may include one or more operations including, but not limited to: receiving a feed of at least one organic compound into an anolyte region of an electrochemical cell including an anode; at least partially oxidizing the at least one organic compound at the anode to generate at least carbon dioxide; receiving a feed including carbon dioxide into a catholyte region of the electrochemical cell including a cathode; and at least partially reducing carbon dioxide to generate a reduction product at the cathode.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: September 2, 2014
    Assignee: Liquid Light, Inc.
    Inventors: Kyle Teamey, Jerry J. Kaczur, Narayanappa Sivasankar, Paul Majsztrik, Emily Barton Cole, Andrew B. Bocarsly
  • Patent number: 8663447
    Abstract: The invention relates to various embodiments of an environmentally beneficial method for reducing carbon dioxide. The methods in accordance with the invention include electrochemically or photoelectrochemically reducing the carbon dioxide in a divided electrochemical cell that includes an anode, e.g., an inert metal counterelectrode, in one cell compartment and a metal or p-type semiconductor cathode electrode in another cell compartment that also contains an aqueous solution of an electrolyte and a catalyst of one or more substituted or unsubstituted aromatic amines to produce therein a reduced organic product.
    Type: Grant
    Filed: November 19, 2012
    Date of Patent: March 4, 2014
    Assignee: Princeton University
    Inventors: Andrew B. Bocarsly, Emily Barton Cole
  • Publication number: 20140034506
    Abstract: Methods and systems for electrochemically generating an oxidation product and a reduction product may include one or more operations including, but not limited to: receiving a feed of at least one organic compound into an anolyte region of an electrochemical cell including an anode; at least partially oxidizing the at least one organic compound at the anode to generate at least carbon dioxide; receiving a feed including carbon dioxide into a catholyte region of the electrochemical cell including a cathode; and at least partially reducing carbon dioxide to generate a reduction product at the cathode.
    Type: Application
    Filed: September 25, 2013
    Publication date: February 6, 2014
    Applicant: Liquid Light, Inc.
    Inventors: Kyle Teamey, Jerry J. Kaczur, Narayanappa Sivasankar, Paul Majsztrik, Emily Barton Cole, Andrew B. Bocarsly
  • Publication number: 20140027303
    Abstract: Methods and systems for electrochemical conversion of carbon dioxide to carboxylic acids, glycols, and carboxylates are disclosed. A method may include, but is not limited to, steps (A) to (D). Step (A) may introduce water to a first compartment of an electrochemical cell. The first compartment may include an anode. Step (B) may introduce carbon dioxide to a second compartment of the electrochemical cell. The second compartment may include a solution of an electrolyte and a cathode. Step (C) may apply an electrical potential between the anode and the cathode in the electrochemical cell sufficient to reduce the carbon dioxide to a carboxylic acid intermediate. Step (D) may contact the carboxylic acid intermediate with hydrogen to produce a reaction product.
    Type: Application
    Filed: September 17, 2013
    Publication date: January 30, 2014
    Applicant: Liquid Light, Inc.
    Inventors: Emily Barton Cole, Kyle Teamey, Andrew B. Bocarsly, Narayanappa Sivasankar
  • Publication number: 20140021042
    Abstract: Methods and systems for electrochemical production of urea are disclosed. A method may include, but is not limited to, steps (A) to (B). Step (A) may introduce carbon dioxide and NOx to a solution of an electrolyte and a heterocyclic catalyst in an electrochemical cell. The divided electrochemical cell may include an anode in a first cell compartment and a cathode in a second cell compartment. The cathode may reduce the carbon dioxide and the NOx into a first sub-product and a second sub-product, respectively. Step (B) may combine the first sub-product and the second sub-product to produce urea.
    Type: Application
    Filed: August 1, 2013
    Publication date: January 23, 2014
    Applicant: Liquid Light, Inc.
    Inventors: Narayanappa Sivasankar, Emily Barton Cole, Kyle Teamey, Andrew B. Bocarsly
  • Publication number: 20140021060
    Abstract: A method for heterocycle catalyzed electrochemical reduction of a carbonyl compound is disclosed. The method generally includes steps (A) to (C). Step (A) may introduce the carbonyl compound into a solution of an electrolyte and a heterocycle catalyst in a divided electrochemical cell. The divided electrochemical cell may include an anode in a first cell compartment and a cathode in a second cell compartment. The cathode generally reduces the carbonyl compound to at least one aldehyde compound. Step (B) may vary which of the aldehyde compounds is produced by adjusting one or more of (i) a cathode material, (ii) the electrolyte, (iii) the heterocycle catalyst, (iv) a pH level and (v) an electrical potential. Step (C) may separate the aldehyde compounds from the solution.
    Type: Application
    Filed: September 16, 2013
    Publication date: January 23, 2014
    Applicant: Liquid Light, Inc.
    Inventors: Narayanappa Sivasankar, Emily Barton Cole, Rishi Parajuli, Andrew B. Bocarsly
  • Patent number: 8592633
    Abstract: Methods and systems for electrochemical conversion of carbon dioxide to carboxylic acids, glycols, and carboxylates are disclosed. A method may include, but is not limited to, steps (A) to (D). Step (A) may introduce water to a first compartment of an electrochemical cell. The first compartment may include an anode. Step (B) may introduce carbon dioxide to a second compartment of the electrochemical cell. The second compartment may include a solution of an electrolyte and a cathode. Step (C) may apply an electrical potential between the anode and the cathode in the electrochemical cell sufficient to reduce the carbon dioxide to a carboxylic acid intermediate. Step (D) may contact the carboxylic acid intermediate with hydrogen to produce a reaction product.
    Type: Grant
    Filed: July 5, 2012
    Date of Patent: November 26, 2013
    Assignee: Liquid Light, Inc.
    Inventors: Emily Barton Cole, Kyle Teamey, Andrew B. Bocarsly, Narayanappa Sivasankar