Patents by Inventor Andrew B. Shah

Andrew B. Shah has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230279165
    Abstract: A process to form a crosslinked composition comprising thermally treating a composition at a temperature ? 25° C., in the presence of moisture, and wherein the composition comprises the following components: a) an olefin/silane interpolymer, b) a cure catalyst selected from the following: i) a metal alkoxide, ii) a metal carboxylate, iii) a metal sulfonate, iv) an aryl sulfonic acid, v) a tris-aryl borane, vi) any combination of two or more from i)-v). Also, a composition comprising the following components a and b, as described above. A process to form an olefin/alkoxysilane interpolymer, and the corresponding composition, said process comprising thermally treating a composition comprising the following components: a) an olefin/silane interpolymer, b) an alcohol, and c) a Lewis acid.
    Type: Application
    Filed: June 23, 2021
    Publication date: September 7, 2023
    Applicants: Dow Global Technologies LLC, Dow Silicones Corporation
    Inventors: Jordan C. Reddel, Mark F. Sonnenschein, David S. Laitar, Andrew B. Shah, Bethany M. Neilson, Colin LiPi Shan, David D. Devore, Jozef J. I. Van Dun, Philip D. Hustad, Zhanjie Li, Zachary S. Kean, Ken Kawamoto
  • Publication number: 20230242693
    Abstract: A process to form a crosslinked composition, said process comprising thermally treating a composition that comprises the following components: a) an olefin/silane interpolymer, b) a cure catalyst, and c) a multi-vinyl compound. A composition comprising the following components: a) an olefin/silane interpolymer, b) a cure catalyst, and c) a multi-vinyl compound.
    Type: Application
    Filed: June 23, 2021
    Publication date: August 3, 2023
    Applicant: Dow Global Technologies LLC
    Inventors: Andrew B. Shah, Jordan C. Reddel, Zachary S. Kean, Bethany M. Neilson, Gerald F. Billovits, David D. Devore, Mark F. Sonnenschein, David S. Laitar
  • Publication number: 20230125570
    Abstract: A polymeric composition includes a silane functionalized polyolefin, a brominated flame retardant having a Temperature of 5% Mass Loss from 300° C. to 700° C. as measured according to Thermogravimetric Analysis, wherein the brominated flame retardant is polymeric and has a weight average molecular weight of from 1,000 g/mol to 30,000 g/mol as measured using Gel Permeation Chromatography, and antimony trioxide. The polymeric composition has an antimony (Sb) to bromine (Br) molar ratio (Sb:Br molar ratio) of 0.35 to 0.98.
    Type: Application
    Filed: July 1, 2021
    Publication date: April 27, 2023
    Inventors: Chongsoo Lim, Andrew B. Shah, Bharat I. Chaudhary
  • Publication number: 20230130450
    Abstract: A method of melt blending a flame-retardant composition includes the steps: (a) heating a polymeric brominated flame retardant to a temperature of 5° C. or greater above the polymeric brominated flame retardants glass transition temperature as measured by Differential Scanning calorimetry, wherein the polymeric brominated flame retardant has a Temperature of 5% Mass Loss from 300° C. to 700° C. as measured according to Thermogravimetric Analysis; (b) mixing a polyolefin into the polymeric brominated flame retardant after step (a); and (c) mixing an inorganic filler into the polyolefin and polymeric brominated flame retardant after step (b) to form the flame-retardant composition.
    Type: Application
    Filed: July 1, 2021
    Publication date: April 27, 2023
    Inventors: Chongsoo Lim, Andrew B. Shah, Bharat I. Chaudhary
  • Publication number: 20230073487
    Abstract: This disclosure relates to continuous methods of making foamed silicone elastomers. This disclosure also relates to compositions used for forming foamed silicone elastomers. The compositions comprise: (i) an organopolysiloxane having at least two silicon-bonded unsaturated groups per molecule; (ii) an organohydrogensiloxane having at least two silicon-bonded hydrogen atoms per molecule; (iii) a hydrosilylation catalyst; and (iv) a physical blowing agent. Foamed silicone elastomers can be prepared from such compositions, using, for example, the methods disclosed herein.
    Type: Application
    Filed: February 3, 2021
    Publication date: March 9, 2023
    Inventors: Andrew B. SHAH, Douglas A. BRUNE, Jody J. HENNING, Nicholas A. PAULIK, Mark F. SONNENSCHEIN, Jarred Q. CRAMTON, Mark FISHER, Greg BECKER, Chris WINDIATE, David SHAWL, David R. SCHLADER, Eric J. HUKKANEN
  • Publication number: 20230059373
    Abstract: A polymeric composition includes a silane functionalized polyolefin; a brominated flame retardant having a Temperature of 5% Mass Loss from 350° C. to 500° C. and from 2 wt % to 50 wt % Retained Mass at 650° C., wherein the 5% Mass Loss and Retained Mass at 650° C. are measured according to Thermogravimetric Analysis; and antimony trioxide, wherein the polymeric composition has an antimony (Sb) to bromine (Br) molar ratio (Sb:Br molar ratio) of greater than 0.0 to 0.35. A coated conductor may be formed using the polymeric composition.
    Type: Application
    Filed: April 12, 2021
    Publication date: February 23, 2023
    Inventors: Bharat I. Chaudhary, Andrew B. Shah, Chongsoo Lim
  • Publication number: 20230033422
    Abstract: A polymeric composition includes a silane functionalized polyolefin, a brominated flame retardant having a Temperature of 5% Mass Loss from 350° C. to 500° C. and from 2 wt % to 50 wt % Retained Mass at 650° C. The 5% Mass Loss and Retained Mass at 650° C. are measured according to Thermogravimetric Analysis. The polymeric composition also includes a zinc (Zn) flame retardant synergist. The polymeric composition is free of antimony trioxide and has a zinc to bromine (Br) molar ratio (Zn:Br molar ratio) of greater than 0.0 to 0.160.
    Type: Application
    Filed: April 12, 2021
    Publication date: February 2, 2023
    Inventors: Bharat I. Chaudhary, Andrew B. Shah, Chongsoo Lim