Patents by Inventor Andrew Barry

Andrew Barry has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11944770
    Abstract: An expandable introducer sheath with an interlock dilator. The present technology provides an expandable sheath with a step feature inside its distal opening, and a dilator with an interlock that includes a catch surface configured to engage with the step feature and resist further relative movement so that the body of the dilator is prevented from exiting the distal end of the expandable sheath. This interlocking engagement may allow the dilator to be used to extend and maintain tension on the expandable sheath during insertion into a patient, and then to be retracted from the expandable sheath by pulling the dilator in the opposite direction. The present technology also provides a dilator hub with a spring mechanism configured to achieve and maintain a desired tension on the expandable sheath and to prevent overextension of the expandable sheath when the dilator is being inserted into the expandable sheath.
    Type: Grant
    Filed: April 6, 2023
    Date of Patent: April 2, 2024
    Assignee: Abiomed, Inc.
    Inventors: Christopher N. Korkuch, Robert Fishman, Michael Thomas Finnegan, Charles DeLorenzo, Andrew Gentile, Anne Gabrielle McLoughlin, Robert Swierczek, Matthew D'Agostino, Jonathan Barry
  • Publication number: 20230407419
    Abstract: Compositions and methods are described that are directed to specific and sensitive methods of target nucleic acid detection and more specifically detecting target nucleic acids directly from biological samples. The compositions and methods were developed to be easy to use involving a minimum number of steps and giving rapid and consistent results either at point of care or in high throughput situations. The compositions and methods are directed to labelled probes and their uses in Loop-Mediated Isothermal Amplification (LAMP) diagnostic tests to detect target DNA from the environment or from an individual and also to detect specific variants of the target DNA, both with similar sensitivity.
    Type: Application
    Filed: August 18, 2023
    Publication date: December 21, 2023
    Applicant: New England Biolabs, Inc.
    Inventors: Nathan Tanner, Yinhua Zhang, Eric Hunt, Gregory Patton, Guoping Ren, Zhiru Li, Andrew Barry, Nicole Nichols, Catherine B. Poole, Harriet M. Strimpel, Ivan R. Correa, Jr., Clotilde Carlow, Esta Slayton, Thomas C. Evans, Jr.
  • Patent number: 11732315
    Abstract: Compositions and methods are described that are directed to specific and sensitive methods of target nucleic acid detection and more specifically detecting target nucleic acids directly from biological samples. The compositions and methods were developed to be easy to use involving a minimum number of steps and giving rapid and consistent results either at point of care or in high throughput situations. The compositions and methods are directed to labelled probes and their uses in Loop-Mediated Isothermal Amplification (LAMP) diagnostic tests to detect target DNA from the environment or from an individual and also to detect specific variants of the target DNA, both with similar sensitivity.
    Type: Grant
    Filed: September 28, 2022
    Date of Patent: August 22, 2023
    Assignee: New England Biolabs, Inc.
    Inventors: Nathan Tanner, Yinhua Zhang, Eric Hunt, Gregory Patton, Guoping Ren, Zhiru Li, Andrew Barry, Nicole Nichols, Catherine B. Poole, Harriet M. Strimpel, Ivan R. Correa, Jr., Clotilde Carlow, Esta Slayton, Thomas C. Evans, Jr.
  • Publication number: 20230048863
    Abstract: Compositions and methods are described that are directed to specific and sensitive methods of target nucleic acid detection and more specifically detecting target nucleic acids directly from biological samples. The compositions and methods were developed to be easy to use involving a minimum number of steps and giving rapid and consistent results either at point of care or in high throughput situations. The compositions and methods are directed to labelled probes and their uses in Loop-Mediated Isothermal Amplification (LAMP) diagnostic tests to detect target DNA from the environment or from an individual and also to detect specific variants of the target DNA, both with similar sensitivity.
    Type: Application
    Filed: September 28, 2022
    Publication date: February 16, 2023
    Applicant: New England Biolabs, Inc.
    Inventors: Nathan Tanner, Yinhua Zhang, Eric Hunt, Gregory Patton, Guoping Ren, Zhiru Li, Andrew Barry, Nicole Nichols, Catherine B. Poole, Harriet M. Strimpel, Ivan R. Correa, JR., Clotilde Carlow, Esta Slayton, Thomas C. Evans, JR.
  • Patent number: 11525166
    Abstract: Kits and methods are described that are directed to specific and sensitive methods of target nucleic acid detection and more specifically detecting target nucleic acids directly from biological samples. The kits and methods were developed to be easy to use involving a minimum number of steps and giving rapid and consistent results either at point of care or in high throughput situations. The kits and methods utilize in various combinations, reversible inhibitors of kit components, thermolabile enzymes, poloxamers, various salts, indicators and one or more Loop-Mediated Isothermal Amplification (LAMP) primer sets for detecting single and/or multiple targets and variants of the targets including SARS-CoV-2 targets and variants thereof in a single reaction. The kits and methods permit detection of the target nucleic with similar sensitivity regardless of the presence of undefined mutations that may enhance the virulence of cells or viruses containing the undefined mutations.
    Type: Grant
    Filed: March 21, 2022
    Date of Patent: December 13, 2022
    Assignee: New England Biolabs, Inc.
    Inventors: Nathan Tanner, Yinhua Zhang, Eric Hunt, Gregory Patton, Guoping Ren, Zhiru Li, Andrew Barry, Nicole Nichols, Catherine B. Poole, Harriet M. Strimpel, Ivan R. Correa, Jr., Clotilde Carlow, Esta Slayton
  • Patent number: 11485186
    Abstract: A suspension assembly for a vehicle may include a wheel support structure operably coupling a wheel to the suspension assembly, a bolt-in spring seat bracket operably coupled to the wheel support structure, and a spring supported by the bolt-in spring seat bracket and disposed between a chassis of the vehicle and the bolt-in spring bracket. The bolt-in spring seat bracket may be adjustable to change a ride height of the vehicle.
    Type: Grant
    Filed: March 10, 2021
    Date of Patent: November 1, 2022
    Assignee: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Jack Wiley Cooper, Sean McMahon Conway, Andrew Barry Lane, Justin Applegate
  • Publication number: 20220288987
    Abstract: A suspension assembly for a vehicle may include a wheel support structure operably coupling a wheel to the suspension assembly, a bolt-in spring seat bracket operably coupled to the wheel support structure, and a spring supported by the bolt-in spring seat bracket and disposed between a chassis of the vehicle and the bolt-in spring bracket. The bolt-in spring seat bracket may be adjustable to change a ride height of the vehicle.
    Type: Application
    Filed: March 10, 2021
    Publication date: September 15, 2022
    Inventors: Jack Wiley Cooper, Sean McMahon Conway, Andrew Barry Lane, Justin Applegate
  • Publication number: 20220213564
    Abstract: Kits and methods are described that are directed to specific and sensitive methods of target nucleic acid detection and more specifically detecting target nucleic acids directly from biological samples. The kits and methods were developed to be easy to use involving a minimum number of steps and giving rapid and consistent results either at point of care or in high throughput situations. The kits and methods utilize in various combinations, reversible inhibitors of kit components, thermolabile enzymes, poloxamers, various salts, indicators and one or more Loop-Mediated Isothermal Amplification (LAMP) primer sets for detecting single and/or multiple targets and variants of the targets including SARS-CoV-2 targets and variants thereof in a single reaction. The kits and methods permit detection of the target nucleic with similar sensitivity regardless of the presence of undefined mutations that may enhance the virulence of cells or viruses containing the undefined mutations.
    Type: Application
    Filed: March 21, 2022
    Publication date: July 7, 2022
    Applicant: New England Biolabs, Inc.
    Inventors: Nathan Tanner, Yinhua Zhang, Eric Hunt, Gregory Patton, Guoping Ren, Zhiru Li, Andrew Barry, Nicole Nichols, Catherine B. Poole, Harriet M. Strimpel, Ivan R. Correa, JR., Clotilde Carlow, Esta Slayton
  • Patent number: 11345970
    Abstract: Kits and methods are described that are directed to specific and sensitive methods of target nucleic acid detection and more specifically detecting target nucleic acids directly from biological samples. The kits and methods were developed to be easy to use involving a minimum number of steps and giving rapid and consistent results either at point of care or in high throughput situations. The kits and methods utilize in various combinations, reversible inhibitors of kit components, thermolabile enzymes, poloxamers, various salts, indicators and one or more Loop-Mediated Isothermal Amplification (LAMP) primer sets for detecting single and/or multiple targets and variants of the targets including SARS-CoV-2 targets and variants thereof in a single reaction. The kits and methods permit detection of the target nucleic with similar sensitivity regardless of the presence of undefined mutations that may enhance the virulence of cells or viruses containing the undefined mutations.
    Type: Grant
    Filed: August 19, 2021
    Date of Patent: May 31, 2022
    Assignee: New England Biolabs, Inc.
    Inventors: Nathan Tanner, Yinhua Zhang, Eric Hunt, Gregory Patton, Guoping Ren, Zhiru Li, Andrew Barry, Nicole Nichols, Catherine B. Poole, Harriet M. Strimpel, Ivan R. Correa, Jr., Clotilde Carlow, Esta Slayton
  • Publication number: 20210404024
    Abstract: Kits and methods are described that are directed to specific and sensitive methods of target nucleic acid detection and more specifically detecting target nucleic acids directly from biological samples. The kits and methods were developed to be easy to use involving a minimum number of steps and giving rapid and consistent results either at point of care or in high throughput situations. The kits and methods utilize in various combinations, reversible inhibitors of kit components, thermolabile enzymes, poloxamers, various salts, indicators and one or more Loop-Mediated Isothermal Amplification (LAMP) primer sets for detecting single and/or multiple targets and variants of the targets including SARS-CoV-2 targets and variants thereof in a single reaction. The kits and methods permit detection of the target nucleic with similar sensitivity regardless of the presence of undefined mutations that may enhance the virulence of cells or viruses containing the undefined mutations.
    Type: Application
    Filed: August 19, 2021
    Publication date: December 30, 2021
    Applicant: New England Biolabs, Inc.
    Inventors: Nathan Tanner, Yinhua Zhang, Eric Hunt, Gregory Patton, Guoping Ren, Zhiru Li, Andrew Barry, Nicole Nichols, Catherine B. Poole, Harriet M. Strimpel, D.Phil., Ivan R. Correa, Jr., Clotilde Carlow, Esta Slayton
  • Publication number: 20210080457
    Abstract: A microfluidic Western blot method and system including a microfluidic western blot method for immunoassay of proteins, the method including introducing a sample including the proteins onto a chip; electrophoretically separating the proteins; binding the separated proteins to beads to form protein-attached beads, the beads being magnetic; flowing the protein-attached beads into a magnetic holding region; applying a magnetic field to the magnetic holding region to fix the protein-attached beads in place within the magnetic holding region; binding primary antibodies to target proteins on the protein-attached beads; binding secondary antibodies to the bound primary antibodies; and detecting the bound secondary antibodies.
    Type: Application
    Filed: November 25, 2020
    Publication date: March 18, 2021
    Inventors: Andrew Barry, Laurel Provencher, Seth Cohen, I-JANE CHEN, Jun Yan, Jingjing Wang
  • Patent number: 10877032
    Abstract: A microfluidic Western blot method and system including a microfluidic western blot method for immunoassay of proteins, the method including introducing a sample including the proteins onto a chip; electrophoretically separating the proteins; binding the separated proteins to beads to form protein-attached beads, the beads being magnetic; flowing the protein-attached beads into a magnetic holding region; applying a magnetic field to the magnetic holding region to fix the protein-attached beads in place within the magnetic holding region; binding primary antibodies to target proteins on the protein-attached beads; binding secondary antibodies to the bound primary antibodies; and detecting the bound secondary antibodies.
    Type: Grant
    Filed: December 4, 2017
    Date of Patent: December 29, 2020
    Assignee: Caliper Life Sciences, Inc.
    Inventors: Andrew Barry, Laurel Provencher, Seth Cohen, I-Jane Chen, Jun Yan, Jingjing Wang
  • Patent number: 10614421
    Abstract: A method, system, and computer-program product for in-memory policy analytics are disclosed. The method includes creating a policy model and determining an effect of a change to one of a value of one of one or more parameters. The policy model is configured to represent one or more policy scenarios by virtue of comprising one or more parameters, and each of the one or more scenarios is defined, at least in part, by each of the one or more parameters comprising a value or a plurality of values. Further, the effect is on at least one of the one or more scenarios.
    Type: Grant
    Filed: September 22, 2014
    Date of Patent: April 7, 2020
    Assignee: ORACLE INTERNATIONAL CORPORATION
    Inventors: Davin James Fifield, Fiona Carolyn Guy, Andrew Barry, Benjamin Stephen O'keeffe
  • Publication number: 20180149647
    Abstract: A microfluidic Western blot method and system including a microfluidic western blot method for immunoassay of proteins, the method including introducing a sample including the proteins onto a chip; electrophoretically separating the proteins; binding the separated proteins to beads to form protein-attached beads, the beads being magnetic; flowing the protein-attached beads into a magnetic holding region; applying a magnetic field to the magnetic holding region to fix the protein-attached beads in place within the magnetic holding region; binding primary antibodies to target proteins on the protein-attached beads; binding secondary antibodies to the bound primary antibodies; and detecting the bound secondary antibodies.
    Type: Application
    Filed: December 4, 2017
    Publication date: May 31, 2018
    Inventors: Andrew Barry, Laurel Provencher, Seth Cohen, I-Jane Chen, Jun Yan, Jingjing Wang
  • Patent number: 9921828
    Abstract: Techniques for merging versions of an inclusion application that is incorporated in a master application are disclosed. One version of an application may be stored as an application that is incorporated into another application. An application that is incorporated into another application may be referred to as an “inclusion application.” An application incorporating another application may be referred to as a “master application.” Additionally, a different version of the application may be stored as an application that is executed independently, without reference to other applications. A merging engine applies a set of conflict resolution rules to the two versions of the application to obtain a merged version of the application. The merging engine incorporates the merged version of the application in the master application.
    Type: Grant
    Filed: September 19, 2016
    Date of Patent: March 20, 2018
    Assignee: Oracle International Corporation
    Inventors: Andrew Barry, Davin Fifield
  • Patent number: 9835623
    Abstract: A microfluidic Western blot method and system including a microfluidic western blot method for immunoassay of proteins, the method including introducing a sample including the proteins onto a chip; electrophoretically separating the proteins; binding the separated proteins to beads to form protein-attached beads, the beads being magnetic; flowing the protein-attached beads into a magnetic holding region; applying a magnetic field to the magnetic holding region to fix the protein-attached beads in place within the magnetic holding region; binding primary antibodies to target proteins on the protein-attached beads; binding secondary antibodies to the bound primary antibodies; and detecting the bound secondary antibodies.
    Type: Grant
    Filed: January 15, 2015
    Date of Patent: December 5, 2017
    Assignee: Caliper Life Sciences, Inc.
    Inventors: Andrew Barry, Laurel Provencher, Seth Cohen, I-Jane Chen, Jun Yan, Jingjing Wang
  • Publication number: 20170083310
    Abstract: Techniques for merging versions of an inclusion application that is incorporated in a master application are disclosed. One version of an application may be stored as an application that is incorporated into another application. An application that is incorporated into another application may be referred to as an “inclusion application.” An application incorporating another application may be referred to as a “master application.” Additionally, a different version of the application may be stored as an application that is executed independently, without reference to other applications. A merging engine applies a set of conflict resolution rules to the two versions of the application to obtain a merged version of the application. The merging engine incorporates the merged version of the application in the master application.
    Type: Application
    Filed: September 19, 2016
    Publication date: March 23, 2017
    Applicant: Oracle International Corporation
    Inventors: Andrew Barry, Davin Fifield
  • Patent number: 9200322
    Abstract: The present invention provides methods and compositions for the diagnosis of acute ischemic stroke. The invention further provides methods and compositions for distinguishing acute ischemic stroke from other forms of stroke and TIAs and “stroke mimic” events. Moreover, methods and compositions are provided to facilitate the treatment of acute ischemic stroke patients.
    Type: Grant
    Filed: February 22, 2011
    Date of Patent: December 1, 2015
    Assignees: The United States of America, as Represented by the Secretary, Department of Health and Human Services, University of Pittsburgh—of the Commonwealth System of Higher Education
    Inventors: Taura L. Barr, Maria Del Mar Matarin, Steven Jay Warach, Andrew Barry Singleton, Yvette P. Conley
  • Publication number: 20150198593
    Abstract: A microfluidic Western blot method and system including a microfluidic western blot method for immunoassay of proteins, the method including introducing a sample including the proteins onto a chip; electrophoretically separating the proteins; binding the separated proteins to beads to form protein-attached beads, the beads being magnetic; flowing the protein-attached beads into a magnetic holding region; applying a magnetic field to the magnetic holding region to fix the protein-attached beads in place within the magnetic holding region; binding primary antibodies to target proteins on the protein-attached beads; binding secondary antibodies to the bound primary antibodies; and detecting the bound secondary antibodies.
    Type: Application
    Filed: January 15, 2015
    Publication date: July 16, 2015
    Applicant: CALIPER LIFE SCIENCES, INC.
    Inventors: Andrew Barry, Laurel Provencher, Seth Cohen, I-Jane Chen, Jun Yan, Jingjing Wang
  • Publication number: 20150088773
    Abstract: A method, system, and computer-program product for in-memory policy analytics are disclosed. The method includes creating a policy model and determining an effect of a change to one of a value of one of one or more parameters. The policy model is configured to represent one or more policy scenarios by virtue of comprising one or more parameters, and each of the one or more scenarios is defined, at least in part, by each of the one or more parameters comprising a value or a plurality of values. Further, the effect is on at least one of the one or more scenarios.
    Type: Application
    Filed: September 22, 2014
    Publication date: March 26, 2015
    Inventors: Davin James Fifield, Fiona Carolyn Guy, Andrew Barry, Benjamin Stephen O'keeffe